




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,函数,若,且,则的取值范围是()A. B.(,)C. D.(,1]2.已知函数,则是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数3.下列关于函数的图象中,可以直观判断方程在上有解的是A. B.C. D.4.给定函数①;②;③;④,其中在区间上单调递减的函数的序号是()A.①② B.②③C.③④ D.①④5.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限6.设,是两条不同的直线,,,是三个不同的平面,给出下列命题:①若,,,则;②若,,则;③若,,,则;④若,,则其中正确命题的序号是A.①③ B.①④C.②③ D.②④7.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.8.已知,则()A. B.C. D.39.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.10.已知、是两条不同的直线,、是两个不同的平面,给出下列命题:①若,,则;②若,,且,则;③若,,则;④若,,且,则其中正确命题的序号是()A.②③ B.①④C.②④ D.①③二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则______.12.函数的部分图象如图所示.若,且,则_____________13.不等式的解集是______14.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________15.已知函数,关于方程有四个不同的实数解,则的取值范围为__________16.已知,,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在正方体中,、分别为、的中点,与交于点.求证:(1);(2)平面平面.18.如图,某园林单位准备绿化一块直径为的半圆形空,外的地方种草,的内接正方形为一水池,其余的地方种花,若,,,设的面积为,正方形的面积为(1)用表示和;(2)当变化时,求的最小值及此时角的大小.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由21.已知平面向量.(1)求与的夹角的余弦值;(2)若向量与互相垂直,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】按照分段函数先求出,由和解出的取值范围即可.【详解】,则,∵,解得,又故选:B.2、B【解析】先求得,再根据余弦函数的周期性、奇偶性,判断各个选项是否正确,从而得出结论【详解】∵,∴=,∵,且T=,∴是最小正周期为偶函数,故选B.【点睛】本题主要考查诱导公式,余弦函数的奇偶性、周期性,属于基础题3、D【解析】方程f(x)-2=0在(-∞,0)上有解,∴函数y=f(x)与y=2在(-∞,0)上有交点,分别观察直线y=2与函数f(x)的图象在(-∞,0)上交点的情况,选项A,B,C无交点,D有交点,故选D点睛:这个题目考查了方程有解的问题,把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,要求图像的画法要准确4、B【解析】根据指对幂函数性质依次判断即可得答案.【详解】解:对于①,在上单调递增;对于②,在上单调递减;对于③,时,在上单调递减;对于④,在上单调递增;故在区间上单调递减的函数的序号是②③故选:B5、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.6、C【解析】由空间中直线与平面的位置关系逐项分析即可【详解】当时,可能平行,也可能相交或异面,所以①不正确;当时,可以平行,也可以相交,所以④不正确;若,,则;若,则,故正确命题的序号是②③.【点睛】本题考查空间中平面与直线的位置关系,属于一般题7、D【解析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【点睛】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.8、A【解析】结合两角和的正切公式、诱导公式求得正确答案.【详解】.故选:A9、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.10、A【解析】对于①当,时,不一定成立;对于②可以看成是平面的法向量,是平面的法向量即可;对于③可由面面垂直的判断定理作出判断;对于④,也可能相交【详解】①当,时,不一定成立,m可能在平面所以错误;②利用当两个平面的法向量互相垂直时,这两个平面垂直,故成立;③因为,则一定存在直线在,使得,又可得出,由面面垂直的判定定理知,,故成立;④,,且,,也可能相交,如图所示,所以错误,故选A【点睛】本题以命题的真假判断为载体考查了空间直线与平面的位置关系,熟练掌握空间线面关系的判定及几何特征是解答的关键二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】化简已知条件,求得,通过两边平方的方法求得,进而求得.【详解】依题意,①,,,化简得①,则,由,得,,.故答案为:12、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.13、【解析】先利用指数函数的单调性得,再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题14、【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式:故答案为.15、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.16、【解析】利用两角和的正弦公式即可得结果.【详解】因为,,所以,由,,可得,,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)证明出四边形为平行四边形,可证得结论成立;(2)证明出平面,平面,利用面面平行的判定定理可证得结论成立.【小问1详解】证明:在正方体中,且,因为、分别为、的中点,则且,所以,四边形为平行四边形,则.【小问2详解】证明:因为四边形为正方形,,则为的中点,因为为中点,则,平面,平面,所以,平面,因为,平面,平面,所以,平面,因为,因此,平面平面.18、(1);(2)最小值【解析】(1)在中,可用表示,从而可求其面积,利用三角形相似可得的长度,从而可得.(2)令,从而可得,利用的单调性可求的最小值.【详解】(1)在中,,所以,.而边上的高为,设斜边上的为,斜边上的高为,因,所以,故,故,.(2),令,则.令,设任意的,则,故为减函数,所以,故,此时即.【点睛】直角三角形中的内接正方形的问题,可借助于解直角三角形和相似三角形得到各边与角的关系,三角函数式的最值问题,可利用三角变换化简再利用三角函数的性质、换元法等可求原三角函数式的最值.19、(1);(2)奇函数,证明见解析;(3)【解析】(1)本题可通过求解得出结果;(2)本题可根据得出结果;(3)本题首先可判断出当时在定义域内是增函数,然后通过得出,通过计算即可得出结果.【详解】(1)因为,所以,解得,的定义域为.(2)的定义域为,,故是奇函数.(3)因为当时,是增函数,是减函数,所以当时在定义域内是增函数,即,,,,,解得,故使的的解集为.20、(1)或;(2);(3)不存在.【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【详解】(1)直线斜率存在时,设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得.所以直线方程为,即.当的斜率不存在时,的方程为,经验证也满足条件即直线的方程为或.(2)由于,而弦心距,所以.所以恰为的中点故以为直径的圆的方程为.(3)把直线代入圆的方程,消去,整理得.由于直线交圆于两点,故,即,解得.则实数的取值范围是设符合条件的实数存在,由于垂直平分弦,故圆心必在上.所以的斜率,而,所以.由于,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主播签约薪酬合同范本
- 别墅室内石材合同范本
- 保密设备合同范本
- 分时度假 合同范本
- 保险增值服务合同范本
- 第15课 现代医疗卫生体系与社会生活 教学设计-2023-2024学年统编版(2019)高二历史选择性必修2 经济与社会生活
- 劳动合同范本txt
- 2024年招商银行郑州分行招聘考试真题
- 二手电线买卖合同范本
- 2024年银川市永宁三沙源上游学校招聘笔试真题
- GB/T 6728-2017结构用冷弯空心型钢
- GB/T 6539-1997航空燃料与馏分燃料电导率测定法
- GB/T 28253-2012挤压丝锥
- GB/T 27689-2011无动力类游乐设施儿童滑梯
- 普通话教程教学课件第八单元词汇和语法的规范与辨正
- 康复治疗技术概论
- 教学课件:《连锁门店运营管理》(第二版)
- 高速综合检测列车轨道检测系统课件
- 如何做一名合格的项目经理 课件
- 抖音开店品牌授权模板
- 大学生必知的自然科学知识考试题库(300题)
评论
0/150
提交评论