2022-2023学年辽宁省五校联考高一上数学期末学业质量监测模拟试题含解析_第1页
2022-2023学年辽宁省五校联考高一上数学期末学业质量监测模拟试题含解析_第2页
2022-2023学年辽宁省五校联考高一上数学期末学业质量监测模拟试题含解析_第3页
2022-2023学年辽宁省五校联考高一上数学期末学业质量监测模拟试题含解析_第4页
2022-2023学年辽宁省五校联考高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.直线与函数的图像恰有三个公共点,则实数的取值范围是A. B.C. D.2.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增3.的值域是()A. B.C. D.4.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.5.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=06.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.87.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是()A.平行 B.相交但不垂直C.垂直相交 D.异面且垂直8.已知函数f(x)=loga(x+1)(其中a>1),则f(x)<0的解集为()A. B.C. D.9.函数f(x)=,的图象大致是()A. B.C. D.10.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数在区间上是增函数,则实数取值范围是______12.函数的最小正周期为,且.当时,则函数的对称中心__________;若,则值为__________.13.已知函数,对于任意都有,则的值为______________.14.已知幂函数的图象过点,则_____________15.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.为适应新冠肺炎疫情长期存在的新形势,打好疫情防控的主动仗,某学校大力普及科学防疫知识,现需要在2名女生、3名男生中任选2人担任防疫宣讲主持人,每位同学当选的机会是相同的.(1)写出试验的样本空间,并求当选的2名同学中恰有1名女生的概率;(2)求当选的2名同学中至少有1名男生的概率.17.已知集合,.(1)若,求实数t的取值范围;(2)若“”是“”的必要不充分条件,求实数t的取值范围18.在①,,②,,两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数___________(填序号即可).(1)求函数的解析式及定义域;(2)解不等式.19.已知,求下列各式的值:(1);(2).20.已知集合,(1)分别求,;(2)已知,若,求实数的取值集合21.在①函数;②函数;③函数的图象向右平移个单位长度得到的图象,的图象关于原点对称;这三个条件中任选一个作为已知条件,补充在下面的问题中,然后解答补充完整的题已知______(只需填序号),函数的图象相邻两条对称轴之间的距离为.(1)求函数的解析式;(2)求函数的单调递减区间及其在上的最值注:若选择多个条件分别解答,则按第一个解答计分.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】解方程组,得,或由直线与函数的图像恰有三个公共点,作出图象,结合图象,知∴实数的取值范围是故选C【点睛】本题考查满足条件的实数的取值范围的求法,解题时要认真审题,注意数形结合思想的合理运用2、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.3、A【解析】先求得的范围,再由单调性求值域【详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.4、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题5、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.6、B【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B7、D【解析】由菱形ABCD平面内,则对角线,又,可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系.【详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内,这与条件相矛盾.故假设不成立,即PA与BD异面.又在菱形ABCD中,对角线,,,则且,所以平面平面.则,所以PA与BD异面且垂直.故选:D【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题.8、D【解析】因为已知a的取值范围,直接根据根据对数函数的单调性和定点解出不等式即可【详解】因为,所以在单调递增,所以所以,解得故选D【点睛】在比较大小或解不等式时,灵活运用函数的单调性以及常数和对指数之间的转化9、A【解析】判断函数的奇偶性,以及函数在上的符号,利用排除法进行判断即可【详解】∵f(x)=,∴,,∴函数是奇函数,排除D,当时,,则,排除B,C.故选:A10、D【解析】根据三视图还原该几何体,然后可算出答案.【详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:12、①.②.【解析】根据最小正周期以及关于的方程求解出的值,根据对称中心的公式求解出在上的对称中心;先求解出的值,然后根据角的配凑结合两角差的正弦公式求解出的值.【详解】因为最小正周期为,所以,又因为,所以,所以或,又因为,所以,所以,所以,令,所以,又因为,所以,所以对称中心为;因为,,所以,若,则,不符合,所以,所以,所以,故答案为:;.13、【解析】由条件得到函数的对称性,从而得到结果【详解】∵f=f,∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.∴f=±2.【点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.14、##【解析】设出幂函数解析式,代入已知点坐标求解【详解】设,由已知得,所以,故答案为:15、【解析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)样本空间答案见解析,概率是(2)【解析】(1)将2名女生,3名男生分别用a,b;c,d,e表示,即可列出样本空间,再根据古典概型的概率公式计算可得;(2)设事件“当选的2名同学中至少有1名男生”,事件“当选的2名同学中全部都是女生”,事件B,C为对立事件,利用古典概型的概率公式求出,最后根据对立事件的概率公式计算可得;【小问1详解】解:将2名女生,3名男生分别用a,b;c,d,e表示,则从5名同学中任选2名同学试验的样本空间为,共有10个样本点,设事件“当选的2名同学中恰有1名女生”,则,样本点有6个,∴.即当选的2名同学中恰有1名女生的概率是【小问2详解】解:设事件“当选的2名同学中至少有1名男生”,事件“当选的2名同学中全部都是女生”,事件B,C为对立事件,因为,∴,∴.即当达的2名同学中至少有1名男生的概率是.17、(1)(2)【解析】(1)首先求出集合,再对与两种情况讨论,分别得到不等式,解得即可;(2)依题意可得集合,分与两种情况讨论,分别到不等式,解得即可;【小问1详解】解:由得解,所以,又若,分类讨论:当,即解得,满足题意;当,即,解得时,若满足,则必有或;解得.综上,若,则实数t的取值范围为.【小问2详解】解:由“”是“”的必要不充分条件,则集合,若,即,解得,若,即,即,则必有,解得,综上可得,,综上所述,当“”是“”的必要不充分条件时,即为所求18、(1)条件选择见解析,答案见解析;(2)条件选择见解析,答案见解析.【解析】(1)根据所选方案,直接求出的解析式,根据对数的真数大于零可求得函数的定义域;(2)根据所选方案,结合二次不等式和对数函数的单调性可得出原不等式的解集.【小问1详解】解:若选①,,由,解得,故函数定义域为;若选②,,易知函数定义域为.【小问2详解】解:若选①,由(1)知,,因为在上单调递增,且,所以,解得或.所以不等式的解集为;若选②,由(1)知,,令,即,解得,即,因为在上单调递增,且,,所以.所以不等式的解集为.19、(1);(2).【解析】(1)求出的值,利用诱导公式结合弦化切可求得结果;(2)在代数式上除以,再结合弦化切可求得结果.【小问1详解】解:因为,则,原式【小问2详解】解:原式.20、(1)(2)【解析】(1)两集合的交集为两集合的相同的元素构成的集合,两集合的并集为两集合所有的元素构成的集合;(2)由两集合的子集关系得到两集合边界值的大小关系,从而解不等式得到的取值范围试题解析:(1),(2)由可得考点:集合运算及集合的子集关系21、(1)条件选择见解析,(2)单调递减区间为,最小值为,最大值为2【解析】(1)选条件①:利用同角三角函数的关系式以及两角和的正弦公式和倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件②:利用两角和的正弦公式以及倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件③,先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论