版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.化为弧度是()A. B.C. D.2.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.23.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.4.设集合,则A. B.C. D.5.向量“,不共线”是“|+|<||+||”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.设集合,则()A. B.C. D.7.已知,则的大小关系是()A. B.C. D.8.sin1830°等于()A. B.C. D.9.已知正数、满足,则的最小值为A. B.C. D.10.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.11.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°12.已知幂函数的图象过点,则的值为()A. B.1C.2 D.4二、填空题(本大题共4小题,共20分)13.已知,则____________________.14.已知,则_________.15.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________16.函数函数的定义域为________________三、解答题(本大题共6小题,共70分)17.已知,,且函数有奇偶性,求a,b的值18.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?19.已知函数的部分图象如下图所示.(1)求函数的解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.20.已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积.21.(1)已知,求最大值(2)已知且,求的最小值22.已知函数,(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)如果,求x的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据角度制与弧度制的互化公式,正确运算,即可求解.【详解】根据角度制与弧度制的互化公式,可得.故选:D.2、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.3、A【解析】利用角速度先求出时,的值,然后利用单调性进行判断即可【详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A4、C【解析】集合,根据元素和集合的关系知道故答案为C5、A【解析】利用向量的线性运算的几何表示及充分条件,必要条件的概念即得.【详解】当向量“,不共线”时,由向量三角形的性质可得“|+|<||+||”成立,即充分性成立,当“,方向相反”时,满足“|+|<||+||”,但此时两个向量共线,即必要性不成立,故向量“,不共线”是“|+|<||+||”的充分不必要条件.故选:A.6、C【解析】利用集合并集的定义,即可求出.【详解】集合,.故选:.【点睛】本题主要考查的是集合的并集的运算,是基础题.7、B【解析】利用指数函数和对数函数的性质,三角函数的性质比较大小即可【详解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴综上可知故选:B8、A【解析】根据诱导公式计算【详解】故选:A9、B【解析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题10、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.11、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A12、C【解析】设出幂函数的解析式,利用给定点求出解析式即可计算作答.【详解】依题意,设,则有,解得,于得,所以.故选:C二、填空题(本大题共4小题,共20分)13、7【解析】将两边平方,化简即可得结果.【详解】因为,所以,两边平方可得,所以,故答案为7.【点睛】本题主要考查指数的运算,意在考查对基础知识的掌握情况,属于简单题.14、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在15、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.16、(1,3)【解析】函数函数的定义域,满足故答案为(1,3).三、解答题(本大题共6小题,共70分)17、为奇函数,,【解析】由函数奇偶性的定义列方程求解即可【详解】若为奇函数,则,所以恒成立,即,所以恒成立,所以,解得,所以当为奇函数时,,若为偶函数,则,所以恒成立,得,得,不合题意,所以不可能是偶函数,综上,为奇函数,,18、(1);(2)年.【解析】(1)设今年碳排放量为,则由题意得,从而可求出的值;(2)设再过年碳排放量不超过今年碳排放量的,则,再把代入解关于的不等式即可得答案【详解】解:设今年碳排放量为.(1)由题意得,所以,得.(2)设再过年碳排放量不超过今年碳排放量,则,将代入得,即,得.故至少再过年,碳排放量不超过今年碳排放量的.19、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递增区间为.(2)由题意知,函数,因为的图象关于直线对称,所以,即,因为,所以,所以.当时,,可得,所以,即函数的值域为.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.20、(1)(2)【解析】(1)根据为等边三角形得出,(2)代入弧长公式和面积公式计算.【详解】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.【点睛】本题主要考查了扇形的相关知识点,弦长、弧长、面积等,属于基础题,解题的关键是在于公式的熟练运用.21、(1)1;(2)2【解析】(1)由基本不等式求出最小值后可得所求最大值(2)凑出积为定值后由基本不等式求得最小值【详解】(1),则,,当且仅当,即时等号成立.所以的最大值为1(2)因为且,所以,当且仅当,即时等号成立.所以所求最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市绿化代理合同
- 2024工程欠款合同范本
- 2024场地租赁及餐饮合作合同
- 2024年孔丽解除婚约协议
- 2024转让物业管理合同书
- 2024年专用吊车租赁及施工吊装合同
- 2024财产份额的转让合同
- 2024年修订版:磷矿权益转让协议
- 2024年城市轨道交通供电合同
- 2024幼儿园食品采购合同模板
- 新《事业单位财务规则》培训讲义0
- 2024下半年黑龙江伊春市事业单位公开招聘工作人员181人重点基础提升难、易点模拟试题(共500题)附带答案详解
- 2024土石坝安全监测技术规范
- 【课件】2024届高三英语高考前指导最后一课(放松心情)课件
- 2024年河南投资集团有限公司招聘笔试冲刺题(带答案解析)
- 2024年中国长航校园招聘79人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 配件供应技术服务和质保期服务计划方案
- 孩子分为四种:认知型、模仿型、逆思型、开放型
- 建筑物维护管理手册
- 信息系统应急管理培训
- 小班故事《快乐的轮胎》课件
评论
0/150
提交评论