




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2)C.(2,3) D.(3,4)2.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.3.已知是第三象限角,且,则()A. B.C. D.4.若,,且,则A. B.C. D.5.已知函数,则的图像大致是()A. B.C. D.6.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与7.已知,,则A. B.C. D.8.设全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},则A∩(∁UB)=()A. B.C. D.9.直线(为实常数)的倾斜角的大小是A B.C. D.10.已知,则的大小关系为()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知tanα=3,则sinα(cosα-sinα)=______12.设函数的图象为,则下列结论中正确的是__________(写出所有正确结论的编号).①图象关于直线对称;②图象关于点对称;③函数在区间内是增函数;④把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到图象.13.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围14.过正方体的顶点作直线,使与棱、、所成的角都相等,这样的直线可以作_________条.15.已知向量,,则向量在方向上的投影为___________.16.为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校男、女生比例为3:2,则全校抽取学生数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小值正周期是(1)求的值;(2)求函数的最大值,并且求使取得最大值的x的集合18.已知函数,,g(x)与f(x)互为反函数.(1)若函数在区间内有最小值,求实数m的取值范围;(2)若函数y=h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围.19.已知函数.(1)求的最小正周期以及对称轴方程;(2)设函数,求在上的值域.20.已知,(1)求的值;(2)求的值;(3)求的值.21.已知为的三个内角,向量与向量共线,且角为锐角.(1)求角的大小;(2)求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】求出、,由及零点存在定理即可判断.【详解】,,,则函数的一个零点落在区间上.故选:B【点睛】本题考查零点存在定理,属于基础题.2、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.3、A【解析】由是第三象限角可判断,利用平方关系即可求解.【详解】解:因为是第三象限角,且,所以,故选:A.4、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一个根,b是方程的另一个根由韦达定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=−6,即b=−8,∴2×b=−16=−q,∴q=16∴p+q=21故选:A5、C【解析】判断函数的奇偶性,再利用时,函数值的符号即可求解.【详解】由,则,所以函数为奇函数,排除B、D.当,则,所以,,所以,排除A.故选:C6、B【解析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.7、C【解析】由已知可得,故选C考点:集合的基本运算8、D【解析】先求∁UB,然后求A∩(∁UB)【详解】∵(∁UB)={x|x<3或x≥5},∴A∩(∁UB)={x|0<x<3}故选D【点睛】本题主要考查集合的基本运算,比较基础9、D【解析】计算出直线的斜率,再结合倾斜角的取值范围可求得该直线的倾斜角.【详解】设直线倾斜角为,直线的斜率为,所以,,则.故选:D.【点睛】本题考查直线倾斜角的计算,一般要求出直线的斜率,考查计算能力,属于基础题.10、B【解析】观察题中,不妨先构造函数比较大小,再利用中间量“1”比较与大小即可得出答案.【详解】由题意得,,由函数在上是增函数可得,由对数性质可知,,所以,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查12、①③【解析】图象关于直线对称;所以①对;图象关于点对称;所以②错;,所以函数在区间内是增函数;所以③对;因为把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到,所以④错;填①③.13、(1)(2)【解析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是14、【解析】将小正方体扩展成4个小正方体,根据直线夹角的定义即可判断出符合条件的条数【详解】解:设ABCD﹣A1B1C1D1边长为1第一条:AC1是满足条件的直线;第二条:延长C1D1到C1且D1C2=1,AC2是满足条件的直线;第三条:延长C1B1到C3且B1C3=1,AC3是满足条件的直线;第四条:延长C1A1到C4且C4A1,AC4是满足条件的直线故答案为4【点睛】本题考查满足条件的直线条数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查分类与整合思想,是基础题15、【解析】直接利用投影的定义求在方向上的投影.【详解】因为,,设与夹角为,,则向量在方向上的投影为:.所以在方向上投影为故答案为:.16、80【解析】频率分布直方图中,先根据小矩形的面积等于这一组的频率求出四与第五组的频率和,再根据条件求出前三组的频数,再依据频率的和等于1,求出前三组的频率,从而求出抽取的男生数,最后按比例求出全校抽取学生数即可【详解】根据图可知第四与第五组的频率和为(0.0125+0.0375)×5=0.25∵从左到右前三个小组频率之比1:2:3,第二小组频数为12∴前三个小组的频数为36,从而男生有人∵全校男、女生比例为3:2,∴全校抽取学生数为48×=80故答案为80【点睛】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,此时.【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解.(2)由(1)知,,令,即可求解.【详解】(1)由题设,函数的最小正周期是,可得,所以;(2)由(1)知,当,即时,取得最大值1,所以函数的最大值为18、(1);(2).【解析】(1)根据二次函数的性质研究情况下的单调性和值域,根据对数复合函数的单调性及其开区间最值,列不等式求参数范围.(2)将问题化为在内有唯一零点,利用二次函数的性质求参数范围即可.【小问1详解】由题设,,,所以在定义域上递增,在上递减,在上递增,又在内有最小值,当,即时,在上递减,上递增,此时的值域为,则;所以,可得;当,即时,在上递减,上递增,此时是值域上的一个子区间,则;所以开区间上不存在最值.综上,.【小问2详解】由,则,要使在(1,2)内有唯一零点,所以在内有唯一零点,又开口向上且对称轴为,所以,可得.19、(1)最小正同期为,对称轴方程为(2)【解析】(1)利用三角函数的恒等变换公式将化为只含有一个三角函数形式,即可求得结果;(2)将展开化简,然后采用整体处理的方法,求得答案.【小问1详解】,所以的最小正同期为.令,得对称轴方程为.【小问2详解】由题意可知,因为,所以,故,所以,故在上的值域为.20、(1);(2)4;(3).【解析】(1)根据同角函数关系得到正弦值,结合余弦值得到正切值;(2)根据诱导公式化简,上下同除余弦值即可;(3)结合两角和的正弦公式和二倍角公式可得到结果.【详解】(1)∵,,∴∴(2).(3)=,根据二倍角公式得到;代入上式得到=.【点睛】这个题目考查了三角函数的同角三角函数的诱导公式和弦化切的应用,以及二倍角公式的应用,利用诱导公式化简三角函数的基本思路:(1)分析结构特点,选择恰当公式;(2)利用公式化成单角三角函数;(3)整理得最简形式.21、(1);(2).【解析】(1)根据平行向量的坐标关系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,这样即可解出tan2A,结合A为锐角,即可求出A;(2)由B+C便得C,从而得到,利用二倍角的余弦公式及两角差的正余弦公式即可化简原函数y=1+sin(B),由前面知0,从而可得到B的范围,结合正弦函数的图象即可得到的范围,即可得出原函数的值域【详解】(1)由m∥n,得(2﹣2sinA)(1+s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 母婴用品专业代购服务合作协议
- 遗产纠纷调节协议书
- 装修公司结算协议书
- 银行承兑抽屉协议书
- 酒店经营合伙协议书
- 首饰工厂订购协议书
- 乡村党建宣传栏协议书
- 餐厅设备租售协议书
- 跳舞团队免责协议书
- 解除劳务协议协议书
- 转让店铺轮胎协议书
- 2025年辽宁省盘锦市中考数学二模试卷
- 完整版新修订《厉行节约反对浪费条例》(课件)
- (区县版)-中小学教辅材料征订专项整治工作方案
- 文员岗位笔试试题及答案
- 2025年制冷工职业技能竞赛参考试题库(共500题含答案)
- 2024年河北承德辰飞供电服务有限公司招聘真题
- 小米集团2024年环境、社会及管治报告(ESG)
- 手机媒体概论(自考14237)复习题库(含真题、典型题)
- 晶圆缺陷检测算法-全面剖析
- 江苏省苏、锡、常、镇2025年高考物理三模试卷含解析
评论
0/150
提交评论