版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知函数,若实数,则函数的零点个数为()A.0 B.1C.2 D.32.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或23.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知集合,则A. B.C. D.5.已知六边形是边长为1的正六边形,则的值为A. B.C. D.6.计算(16A.-1 B.1C.-3 D.37.设奇函数在上为增函数,且,则不等式的解集为A. B.C. D.8.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.9.若函数在上是增函数,则实数的取值范围是()A. B.C. D.10.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.11.已知命题,,则p的否定是()A., B.,C., D.,12.下列函数中为奇函数,且在定义域上是增函数是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知单位向量与的夹角为,向量的夹角为,则cos=_______14.已知命题“,”是真命题,则实数的取值范围为__________15.两平行线与的距离是__________16.已知,若,使得,若的最大值为,最小值为,则__________三、解答题(本大题共6小题,共70分)17.设,为两个不共线的向量,若.(1)若与共线,求实数的值;(2)若为互相垂直的单位向量,且,求实数的值.18.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.19.已知二次函数y=ax2+bx﹣a+2(1)若关于x的不等式ax2+bx﹣a+2>0的解集是{x|﹣1<x<3},求实数a,b的值;(2)若b=2,a>0,解关于x的不等式ax2+bx﹣a+2>020.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在直线的方程21.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.22.已知.(1)求函数的最小正周期及单调增区间;(2)若,,求的值.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项.【详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个,故选:D.【点睛】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题.多选题2、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C3、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C4、C【解析】分别解集合A、B中的不等式,再求两个集合的交集【详解】集合,集合,所以,选择C【点睛】进行集合的交、并、补运算前,要搞清楚每个集合里面的元素种类,以及具体的元素,再进行运算5、D【解析】如图,,选D.6、B【解析】原式=故选B7、D【解析】由f(x)为奇函数可知,=<0.而f(1)=0,则f(-1)=-f(1)=0.当x>0时,f(x)<0=f(1);当x<0时,f(x)>0=f(-1)又∵f(x)在(0,+∞)上为增函数,∴奇函数f(x)在(-∞,0)上为增函数所以0<x<1,或-1<x<0.选D点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内8、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题9、B【解析】令,则可得,解出即可.【详解】令,其对称轴为,要使在上是增函数,则应满足,解得.故选:B.10、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B11、D【解析】由否定的定义写出即可.【详解】p的否定是,.故选:D12、D【解析】结合基本初等函数的单调性及奇偶性分别检验各选项即可判断【详解】对于函数,定义域为,且,所以函数为偶函数,不符合题意;对于在定义域上不单调,不符合题意;对于在定义域上不单调,不符合题意;对于,由幂函数的性质可知,函数在定义域上为单调递增的奇函数,符合题意故选:D二、填空题(本大题共4小题,共20分)13、【解析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【点睛】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.14、【解析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【点睛】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题15、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.16、【解析】作出函数的图像,计算函数的对称轴,设,数形结合判断得时,取最小值,时,取最大值,再代入解析式从而求解出另外两个值,从而得和,即可求解.【详解】作出函数的图像如图所示,令,则函数的对称轴为,由图可知函数关于,,对称,设,则当时,取最小值,此时,可得,故;当时,取最大值,此时,可得,故,所以.故答案为:【点睛】解答该题的关键是利用数形结合,利用三角函数的对称性与周期性判断何时取得最大值与最小值,再代入计算.三、解答题(本大题共6小题,共70分)17、(1)-;(2)2.【解析】(1)若与共线,则存在实数,使得,根据,为两个不共线的向量可列出关于k和λ的方程组,求解方程组即可;(2)若,则,代入,根据向量数量积运算律即可计算.小问1详解】若与共线,则存在实数,使得,即,则且,解得;小问2详解】由题可知,,,若,则,变形可得:,即.18、(1);(2)【解析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件,利用频率估计概率,得,即从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内的概率为:;(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,从该商城销售的乙品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,利用频率估计概率,得:,则,某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概率为:.【点睛】关键点点睛:本题解题的关键是利用频率表示概率.19、(1)a=﹣1,b=2(2)见解析【解析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【小问1详解】由题意知,﹣1和3是方程ax2+bx﹣a+2=0两根,所以,解得a=﹣1,b=2;【小问2详解】当b=2时,不等式ax2+bx﹣a+2>0为ax2+2x﹣a+2>0,即(ax﹣a+2)(x+1)>0,所以,当即时,解集为;当即时,解集为或;当即时,解集为或.20、(1);(2)【解析】分析:(1)先由AD与AB垂直,求得AD的斜率,再由点斜式求得其直线方程;(2)根据矩形特点可以设DC的直线方程为,然后由点到直线的距离得出,就可以求出m的值,即可求出结果.详解:(1)由题意:ABCD为矩形,则AB⊥AD,又AB边所在的直线方程为:x-3y-6=0,所以AD所在直线的斜率kAD=-3,而点T(-1,1)在直线AD上所以AD边所在直线的方程为:3x+y+2=0.(2)方法一:由ABCD为矩形可得,AB∥DC,所以设直线CD的方程为x-3y+m=0.由矩形性质可知点M到AB、CD的距离相等所以=,解得m=2或m=-6(舍)所以DC边所在的直线方程为x-3y+2=0.方法二:方程x-3y-6=0与方程3x+y+2=0联立得A(0,-2),关于M的对称点C(4,2)因AB∥DC,所以DC边所在的直线方程为x-3y+2=0.点睛:本题主要考查直线方程的求法,在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况21、(1);(2)直线过定点;(3)【解析】(1)利用点到直线的距离公式,结合点到的距离,可求的值;(2)由题意可知:、、、四点共圆且在以为直径的圆上,、在圆上可得直线,的方程,即可求得直线是否过定点;(3)设圆心到直线、的距离分别为,.则,表示出四边形的面积,利用基本不等式,可求四边形的面积最大值【详解】解:(1),点到的距离,(2)由题意可知:、、、四点共圆且在以为直径的圆上,设,其方程为:,即,又、在圆上,即由,得,直线过定点)(3)设圆心到直线、的距离分别为,则,当且仅当即时,取“”四边形的面积的最大值为22、(1)最小正周期,单调增区间为,;(2).【解析】(1)将函数解析式化简为,可得周期为;将看作一个整体代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶科学方法研究报告
- 2024年度物业网络维护合同:大楼信息通信设备保障
- 绿化植物租摆合同
- 2024年度林地生物多样性保护合同
- 私家庭院景观设计合同
- 2024年度宾馆维修合同:设施设备维修与保养协议
- 2024年度新能源开发合同:太阳能发电站的研发与建设
- 2024年度带司机租车长期合同
- 二零二四年度大米出口:国际采购与运输合同
- 二零二四年度专利技术转让合同内容
- 外固定架ppt参考课件
- DB15T 435-2006 内蒙古自治区公路风吹雪雪害防治技术
- 《口算除法》课堂实录
- 《相似三角形的判定与性质-相似三角形的判定》-完整版课件
- 八年级物理光学部分竞赛试题(卷)与答案
- 急救中心急救站点建设标准
- 《花卉栽培技术》课程思政教学案例
- 福乐伟离心机说明书
- 小学科学教育科学五年级上册光《光是怎样传播的》教学设计
- 《水浒传》导读5武松课件
- 英国的宗教改革课件
评论
0/150
提交评论