2022-2023学年上海市复旦附中浦东分校数学高一上期末调研模拟试题含解析_第1页
2022-2023学年上海市复旦附中浦东分校数学高一上期末调研模拟试题含解析_第2页
2022-2023学年上海市复旦附中浦东分校数学高一上期末调研模拟试题含解析_第3页
2022-2023学年上海市复旦附中浦东分校数学高一上期末调研模拟试题含解析_第4页
2022-2023学年上海市复旦附中浦东分校数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义运算,则函数的部分图象大致是()A. B.C. D.2.与终边相同的角是A. B.C. D.3.已知是锐角三角形,,,则A. B.C. D.与的大小不能确定4.设,,,则,,的大小关系为()A. B.C. D.5.设,则A. B.0C.1 D.6.已知定义在R上的奇函数f(x)满足,当时,,则()A. B.C. D.7.已知菱形的边长为2,,点分别在边上,,.若,则等于()A. B.C. D.8.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.9.已知是定义在上的奇函数,且当时,,那么A. B.C. D.10.已知函数在区间是减函数,则实数a的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=log2(x2-1)的单调递减区间为________12.已知奇函数满足,,若当时,,则______13.已知是定义在R上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是______.14.若函数fx=-x+3,x≤2,logax,x>2(a>0且a≠1).①若a=12,则f15.已知函数部分图象如图所示,则函数的解析式为:____________16.已知函数对于任意,都有成立,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.18.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图(1)所示;产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资的单位均为万元)图(1)图(2)(1)分别求,两种产品的利润关于投资的函数解析式(2)已知该企业已筹集到18万元资金,并将全部投入,两种产品的生产①若平均投入两种产品的生产,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?19.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B120.已知,若在上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数的单调性,并求出的最小值.21.已知非空数集,设为集合中所有元素之和,集合是由集合的所有子集组成的集合(1)若集合,写出和集合;(2)若集合中的元素都是正整数,且对任意的正整数、、、、,都存在集合,使得,则称集合具有性质①若集合,判断集合是否具有性质,并说明理由;②若集合具有性质,且,求的最小值及此时中元素的最大值的所有可能取值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据运算得到函数解析式作图判断.【详解】,其图象如图所示:故选:B2、D【解析】与终边相同的角是.当1时,故选D3、A【解析】分析:利用作差法,根据“拆角”技巧,由三角函数的性质可得.详解:将,代入,,可得,,由于是锐角三角形,所以,,,,所以,,综上,知.故选A点睛:本题主要考查三角函数的性质,两角和与差的三角函数以及作差法比较大小,意在考查学生灵活运用所学知识解答问题的能力,属于中档题.解答本题的关键是运用好“拆角”技巧.4、D【解析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案.【详解】因为,,,所以.故选:D.5、B【解析】详解】故选6、B【解析】由题意得,因为,则,所以函数表示以为周期的周期函数,又因为为奇函数,所以,所以,,,所以,故选B.7、C【解析】,,即①,同理可得②,①+②得,故选C考点:1.平面向量共线充要条件;2.向量的数量积运算8、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C9、C【解析】由题意得,,故,故选C考点:分段函数的应用.10、C【解析】先由题意得到二次函数在区间是增函数,且在上恒成立;列出不等式组求解,即可得出结果.【详解】因为函数在区间是减函数,所以只需二次函数在区间是增函数,且在上恒成立;所以有:,解得;故选C【点睛】本题主要考查由对数型复合函数的单调性求参数的问题,熟记对数函数与二次函数的性质即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为12、【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解.【详解】因为,即是以周期为的周期函数.为奇函数且当时,,,当时,所以故答案为:13、【解析】由题意在上单调递减,又是偶函数,则不等式可化为,则,,解得14、①.-2②.1<a≤2【解析】先计算f-1的值,再计算ff-1【详解】当a=12时,所以f-1所以ff当x≤2时,fx当x=2时,fx=-x+3取得最小值当0<a<1时,且x>2时,f(x)=log此时函数无最小值.当a>1时,且x>2时,f(x)=log要使函数有最小值,则必须满足loga2≥1,解得故答案为:-2;1<a≤2.15、【解析】先根据图象得到振幅和周期,即求得,再根据图象过,求得,得到解析式.【详解】由图象可知,,故,即.又由图象过,故,解得,而,故,所以.故答案为:.16、##【解析】由可得时,函数取最小值,由此可求.【详解】,其中,.因为,所以,,解得,,则故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)详见解析【解析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即可证明对应公式.【详解】(1)①,,.②,,.(2)①证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.②证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.【点睛】主要考查对诱导公式的掌握以及推导过程,熟练运用任意角三角函数的定义,属于基础题.18、(1),;(2)当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【解析】(1)设投资为万元(),设,,根据函数的图象,求得的值,即可得到函数的解析式;,(2)①由(1)求得,,即可得到总利润.②设产品投入万元,产品投入万元,得到则,结合二次函数的图象与性质,即可求解【详解】(1)设投资为万元(),,两种产品所获利润分别为,万元,由题意可设,,其中,是不为零的常数所以根据图象可得,,,,所以,(2)①由(1)得,,所以总利润为万元②设产品投入万元,产品投入万元,该企业可获总利润为万元,则,令,则,且,则,当时,,此时,当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【点睛】本题主要考查了函数的实际应用问题,其中解答中能够从图象中准确地获取信息,利用待定系数法求得函数的解析式,再结合二次函数的图象与性质是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题19、(1)见解析;(2)见解析【解析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【点睛】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整20、(1);(2)答案见解析.【解析】解:(1)函数的对称轴为直线,而∴在上最小值为,①当时,即时,②当2时,即时,,(2)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.21、(1),;(2)①有,理由见解析;②的最小值为,所有可能取值是、、、、.【解析】(1)根据题中定义可写出与;(2)(i)求得,取、、、、,找出对应的集合,使得,即可得出结论;(ii)设,不妨设,根据题中定义分析出、,,,,,然后验证当、、、、时,集合符合题意,即可得解.【小问1详解】解:由题中定义可得,.【小问2详解】解:(ⅰ)集合具有性质,理由如下:因为,所以当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;当时,取集合,则;综上可得,集合具有性质;(ⅱ)设集合,不妨设因为为正整数,所以,因为存在使得,所以此时中不能包含元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论