平行四边形的判定(两组对边相等)课件_第1页
平行四边形的判定(两组对边相等)课件_第2页
平行四边形的判定(两组对边相等)课件_第3页
平行四边形的判定(两组对边相等)课件_第4页
平行四边形的判定(两组对边相等)课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

18.1.2平行四边形的判定有两组对边分别平行的四边形叫做平行四边形平行四边形的定义ABCD四边形ABCD如果AB∥CDAD∥BCBDABCDACBDACO平行四边形的性质:边平行四边形的对边平行平行四边形的对边相等角平行四边形的对角相等平行四边形的邻角互补对角线平行四边形的对角线互相平分∵四边形ABCD是平行四边形∴AB=CDAD=BC∴AB∥CDAD∥BC好汉回头平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.ADCB几何语言:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形练习:P49复习巩固(2)P51(11)P50(10)开动脑筋

有一天,李老师的儿子从幼儿园放学来到办公室,看到郑老师办公桌上一块平行四边形纸片,于是就拿起笔来画画,画了一会儿,对自已的作品不满意撕去了一些,巧的是刚好从A、C两个顶点撕开。你只有尺规,你能帮它补好吗?ABCD通过以上活动你得到了什么结论?

两组对边相等的四边形是平行四边形BDAC已知:四边形ABCD,AB=CD,AD=BC求证:四边形ABCD是平行四边形2134连结AC,∵AB=CD,AD=BC

(已知)又∵AC=AC(公共边)∴△ABC≌△CDA(SSS)证明:∴∠1=∠2,∠3=∠4(全等三角形的对应边相等)∴AB∥CD,AD∥BC(内错角相等,两直线平行)∴四边形ABCD是平行四边形命题1:两组对边相等的四边形是平行四边形平行四边形判定平行四边形的判定定理1:两组对边分别相等的四边形是平行四边形。ABCD∵AB=CD,AD=BC(已知)∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形。)3、填空题:如图,在四边形ABCD中,①如果AD=8cm,AB=4cm,且BC=____cm,CD=____cm,那么四边形ABCD是平行四边形。84根据:两组对边相等的四边形是平行四边形练习:P51(13)ABCD

如图,AB=CD,且∠DCA=∠BAC,四边形ABCD是平行四边吗?请证明。DBACBDAC小锋提议:我们可以度量它的角,如果它的两组对角分别相等,那么它就是一个平行四边形。我们能否证明他的正确性呢?平行四边形的判定平行四边形的判定定理2:两组对角分别相等的四边形是平行四边形。ABCD∵∠A=∠C,∠B=∠D

(已知)∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形。)

小丽却说:“我可以不用任何作图工具,只要两条细绳就能判断它是不是平行四边形。”只见小丽用两条细绳做四边形的对角线,并在两条对角线的交点处作了个记号。然后分别把两条对角线沿记号点对折,发现它们被记号点分成的两段线段都能重合,小丽高兴地说:“这的确是个平行四边形!”你认为小丽的做法有根据吗?BDACO已知:四边形ABCD中,AC、BD交于点O

且OA=OC,OB=OD求证:四边形ABCD是平行四边形试一试4213证明:∵AO=CO,BO=DO,∠1=∠2∴△AOB≌△COD∴AB∥CD

同理AD∥

BC∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)∴∠3=∠4BCADO已知:如图,四边形对角线相交于点o,

且OA=OC、OB=OD.求证:四边形ABCD是平行四边形证明:在△AOB和△COD中∴△AOB≌△COD(SAS)∴AB=CD同理:AD=CB∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形。)

OA=OCOB=OD∠AOB=∠COD平行四边形的判定平行四边形的判定定理3:对角线互相平分的四边形是平行四边形。∵OA=OC,OB=OD(已知)∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形。)

BDACO开心一练:1.根据下列条件,不能判定一个四边形为平行四边形的是()(A)两组对边分别相等(B)两条对角线互相平分(C)两条对角线相等(D)两组对边分别平行C请你识别下列四边形哪些是平行四边形?请说明理由?说一说ADCB110°70°110°⑴⑷⑶ABCD120°60°5㎝5㎝ABCDO5㎝5㎝4㎝4㎝BADC4.8㎝4.8㎝⑵7.6㎝7.6㎝大显身手练习2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论