版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.5.3定积分的概念1.5.3定积分的概念1.定积分的概念(1)定积分的定义式(2)积分下限__,积分上限__,积分区间________,被积函数_____,积分变量x,被积式_______.ab[a,b]f(x)f(x)dx积分上限积分号积分下限被积函数1.定积分的概念ab[a,b]f(x)f(x)dx积分上限积2.定积分的几何意义如果在区间[a,b]上函数f(x)连续且恒有________,那么定积分表示由直线____________和曲线_______所围成的曲边梯形的面积.f(x)≥0x=a,x=b,y=0y=f(x)2.定积分的几何意义f(x)≥0x=a,x=b,y=0y=f3.定积分的性质(1)(k为常数).(2)(3)3.定积分的性质二、定积分的运算性质正确理解定积分的性质,思考下列问题:探究1:定积分的性质(2)能推广到多个函数和或差的定积分运算吗?提示:能.推广公式为二、定积分的运算性质探究2:定积分的性质(3)能推广到有限个区间上的积分和吗?提示:能.推广公式为探究2:定积分的性质(3)能推广到有限个区间上的积分和【探究提升】定积分的运算性质的关注点(1)线性运算:定积分的性质(1)(2)称为定积分的线性运算,等式两边积分区间保持不变.(2)区间可加性:定积分的性质(3),称为定积分对积分区间的可加性,等式右边任意两个积分区间的交集都是空集,各个积分区间的并集等于左边的积分区间.【探究提升】定积分的运算性质的关注点类型一利用定义求定积分1.利用定积分的定义求的值.类型一利用定义求定积分【技法点拨】用定义法求积分的步骤(1)分割:将积分区间[a,b]n等分.(2)近似代替:取点ξi∈[xi-1,xi],可取ξi=xi-1或者ξi=xi.(3)求和:(4)求极限:【技法点拨】用定义法求积分的步骤【变式训练】利用定积分的定义计算的值.【解析】把区间[1,2]分成n等份,每个小区间的长度为在上取所以作积求和所以【变式训练】利用定积分的定义计算的值.类型二定积分几何意义的应用根据定积分的几何意义结合函数图象求解定积分的值,并总结用定积分表示曲线围成的平面区域的面积的步骤.1.利用定积分的几何意义填空.(1)(2)2.定积分的几何意义是什么?类型二定积分几何意义的应用【解题指南】1.根据定积分的几何意义,通过求相应图形的面积求定积分的值.2.弄清被积函数的图象,结合定积分的几何意义作答.【解析】1.(1)表示的是图(1)中阴影所示长方形的面积,由于这个长方形的面积为2,所以答案:2【解题指南】1.根据定积分的几何意义,通过求相应图形的面(2)表示的是图(2)中阴影所示梯形的面积,由于这个梯形的面积为所以答案:(2)表示的是图(2)中阴影所示梯形的面积,由于这2.被积函数的图象是以原点为圆心,半径r=3的圆位于x轴上方的部分(包括与x轴的交点).由积分的几何意义可知,定积分表示此半圆的面积.2.被积函数的图象是以原点为圆心,半径r【互动探究】本题2若改为“求定积分的值”,结果怎样?【解题指南】根据定积分的几何意义,通过求规则图形的面积求定积分的值.【互动探究】本题2若改为“求定积分的【解析】被积函数的图象是以原点为圆心,半径r=3的圆位于x轴下方的部分(包括与x轴的交点).由积分的几何意义可知,定积分表示此半圆的面积S=的相反数,故【解析】被积函数的图象是以原点为圆心,【技法点拨】用定积分表示曲线围成的平面区域的面积的步骤(1)准确画出各曲线围成的平面区域.(2)把平面区域分割成容易表示的几部分,同时注意x轴下方有没有区域.(3)解曲线组成的方程组确定积分的上、下限.(4)根据积分的性质写出结果.【技法点拨】用定积分表示曲线围成的平面区域的面积的步骤类型三定积分性质的应用熟练根据定积分的性质进行相关的运算,并总结利用定积分的性质求定积分的策略.1.已知则()2.已知类型三定积分性质的应用【解题指南】1.根据定积分的运算性质把所求定积分转化成两个定积分的和.2.直接利用定积分的运算性质把所求定积分转化成两个定积分的差,然后再根据定积分的几何意义求解.【解题指南】1.根据定积分的运算性质把所求定积分转化成两个定【解析】1.选C.由定积分的性质可知,2.因为表示x=0,x=2,y=0,y=2x围成的图形的面积,所以所以=8-4=4.答案:4【解析】1.选C.由定积分的性质可知,【技法点拨】利用定积分的性质求定积分的策略(1)利用性质可把定积分分成几个简单的积分的组合,对于每一个积分都可以利用定积分的几何意义求出,从而得到所求定积分的值.(2)求分段函数的定积分,可先把每一段的定积分求出后再相加.提醒:要注意合理利用函数的奇偶性、对称性求解.【技法点拨】利用定积分的性质求定积分的策略【拓展延伸】奇函数、偶函数在对称区间上的积分(1)若f(x)为偶函数,且在[-a,a]上图象连续不断,则(2)若f(x)为奇函数,且在[-a,a]上图象连续不断,则【拓展延伸】奇函数、偶函数在对称区间上的积分【变式训练】已知函数f(x)为偶函数.证明【证明】由定积分的性质可知由定积分的几何意义及偶函数的图象特征可知所以【变式训练】已知函数f(x)为偶函数.证明1.若在区间[1,2]上,f(x)>0恒成立,则的符号()A.一定为正B.一定为负C.可能为正,也可能为负D.不能判断【解析】选A.由定积分的概念可知,的值为曲边梯形的面积.而该曲边梯形始终在x轴的上方,故其值为正.1.若在区间[1,2]上,f(x)>0恒成立,则2.求曲线y=ex,直线x=2,y=1围成的图形的面积时,若选择x为积分变量,则积分区间为()A.[0,e2]B.[0,2]C.[1,2]D.[0,1]【解析】选B.因为y=1时,由1=ex,所以x=0,所以根据围成图形的形状及积分变量可知,积分区间为[0,2].2.求曲线y=ex,直线x=2,y=1围成的图形的面积时,若3.已知则()【解析】选D.由定积分的性质可知3.已知则()4.计算【解析】答案:44.计算5.由所围成的图形的面积写成定积分的形式为_______.【解析】由定积分的定义和几何意义可知答案:5.由所围成的图形的6.已知求:(1)(2)(3)6.已知1.5.3定积分的概念1.5.3定积分的概念1.定积分的概念(1)定积分的定义式(2)积分下限__,积分上限__,积分区间________,被积函数_____,积分变量x,被积式_______.ab[a,b]f(x)f(x)dx积分上限积分号积分下限被积函数1.定积分的概念ab[a,b]f(x)f(x)dx积分上限积2.定积分的几何意义如果在区间[a,b]上函数f(x)连续且恒有________,那么定积分表示由直线____________和曲线_______所围成的曲边梯形的面积.f(x)≥0x=a,x=b,y=0y=f(x)2.定积分的几何意义f(x)≥0x=a,x=b,y=0y=f3.定积分的性质(1)(k为常数).(2)(3)3.定积分的性质二、定积分的运算性质正确理解定积分的性质,思考下列问题:探究1:定积分的性质(2)能推广到多个函数和或差的定积分运算吗?提示:能.推广公式为二、定积分的运算性质探究2:定积分的性质(3)能推广到有限个区间上的积分和吗?提示:能.推广公式为探究2:定积分的性质(3)能推广到有限个区间上的积分和【探究提升】定积分的运算性质的关注点(1)线性运算:定积分的性质(1)(2)称为定积分的线性运算,等式两边积分区间保持不变.(2)区间可加性:定积分的性质(3),称为定积分对积分区间的可加性,等式右边任意两个积分区间的交集都是空集,各个积分区间的并集等于左边的积分区间.【探究提升】定积分的运算性质的关注点类型一利用定义求定积分1.利用定积分的定义求的值.类型一利用定义求定积分【技法点拨】用定义法求积分的步骤(1)分割:将积分区间[a,b]n等分.(2)近似代替:取点ξi∈[xi-1,xi],可取ξi=xi-1或者ξi=xi.(3)求和:(4)求极限:【技法点拨】用定义法求积分的步骤【变式训练】利用定积分的定义计算的值.【解析】把区间[1,2]分成n等份,每个小区间的长度为在上取所以作积求和所以【变式训练】利用定积分的定义计算的值.类型二定积分几何意义的应用根据定积分的几何意义结合函数图象求解定积分的值,并总结用定积分表示曲线围成的平面区域的面积的步骤.1.利用定积分的几何意义填空.(1)(2)2.定积分的几何意义是什么?类型二定积分几何意义的应用【解题指南】1.根据定积分的几何意义,通过求相应图形的面积求定积分的值.2.弄清被积函数的图象,结合定积分的几何意义作答.【解析】1.(1)表示的是图(1)中阴影所示长方形的面积,由于这个长方形的面积为2,所以答案:2【解题指南】1.根据定积分的几何意义,通过求相应图形的面(2)表示的是图(2)中阴影所示梯形的面积,由于这个梯形的面积为所以答案:(2)表示的是图(2)中阴影所示梯形的面积,由于这2.被积函数的图象是以原点为圆心,半径r=3的圆位于x轴上方的部分(包括与x轴的交点).由积分的几何意义可知,定积分表示此半圆的面积.2.被积函数的图象是以原点为圆心,半径r【互动探究】本题2若改为“求定积分的值”,结果怎样?【解题指南】根据定积分的几何意义,通过求规则图形的面积求定积分的值.【互动探究】本题2若改为“求定积分的【解析】被积函数的图象是以原点为圆心,半径r=3的圆位于x轴下方的部分(包括与x轴的交点).由积分的几何意义可知,定积分表示此半圆的面积S=的相反数,故【解析】被积函数的图象是以原点为圆心,【技法点拨】用定积分表示曲线围成的平面区域的面积的步骤(1)准确画出各曲线围成的平面区域.(2)把平面区域分割成容易表示的几部分,同时注意x轴下方有没有区域.(3)解曲线组成的方程组确定积分的上、下限.(4)根据积分的性质写出结果.【技法点拨】用定积分表示曲线围成的平面区域的面积的步骤类型三定积分性质的应用熟练根据定积分的性质进行相关的运算,并总结利用定积分的性质求定积分的策略.1.已知则()2.已知类型三定积分性质的应用【解题指南】1.根据定积分的运算性质把所求定积分转化成两个定积分的和.2.直接利用定积分的运算性质把所求定积分转化成两个定积分的差,然后再根据定积分的几何意义求解.【解题指南】1.根据定积分的运算性质把所求定积分转化成两个定【解析】1.选C.由定积分的性质可知,2.因为表示x=0,x=2,y=0,y=2x围成的图形的面积,所以所以=8-4=4.答案:4【解析】1.选C.由定积分的性质可知,【技法点拨】利用定积分的性质求定积分的策略(1)利用性质可把定积分分成几个简单的积分的组合,对于每一个积分都可以利用定积分的几何意义求出,从而得到所求定积分的值.(2)求分段函数的定积分,可先把每一段的定积分求出后再相加.提醒:要注意合理利用函数的奇偶性、对称性求解.【技法点拨】利用定积分的性质求定积分的策略【拓展延伸】奇函数、偶函数在对称区间上的积分(1)若f(x)为偶函数,且在[-a,a]上图象连续不断,则(2)若f(x)为奇函数,且在[-a,a]上图象连续不断,则【拓展延伸】奇函数、偶函数在对称区间上的积分【变式训练】已知函数f(x)为偶函数.证明【证明】由定积分的性质可知由定积分的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融服务承揽合同三篇
- 物流成本控制与仓库效率计划
- 贷款利率协议三篇
- 纺织品供应招标合同三篇
- 基金小镇相关行业投资规划报告
- 涉外学生管理与适应辅导计划
- 新光源助航灯光设备相关项目投资计划书范本
- 多媒体教学资源利用计划
- 企业虚拟货币贷款合同三篇
- 预算执行监控方案计划
- 土壤采样方案
- 【中药贮藏与养护问题及解决对策4000字(论文)】
- 2023-2024学年天津市部分地区六年级数学第一学期期末综合测试试题含答案
- 小学生预防性侵讲稿
- 人工智能算法贝叶斯算法
- 外墙外保温监理实施细则
- 剪映使用课件s
- B2B电子商务网站调研报告
- 《基础教育课程改革(新课程改革)》题库含答案解析
- 钹式换能器的共振特性研究
- 【道法广角】成语故事会:立木为信
评论
0/150
提交评论