版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(四十二)直线、平面垂直的判定及其性质一抓基础,多练小题做到眼疾手快1.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A依题意,由l⊥β,l⊂α可以推出α⊥β;反过来,由α⊥β,l⊂α不能推出l⊥β.因此“l⊥β”是“α⊥β”成立的充分不必要条件,故选A.2.已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β,其中正确的命题的个数是()A.1 B.2C.3 D.4解析:选B①中,α∥β,且m⊥α,则m⊥β,因为l⊂β,所以m⊥l,所以①正确;②中,α⊥β,且m⊥α,则m∥β或m⊂β,又l⊂β,则m与l可能平行,可能异面,可能相交,所以②不正确;③中,m⊥l,且m⊥α,l⊂β,则α与β可能平行,可能相交,所以③不正确;④中,m∥l,且m⊥α,则l⊥α,因为l⊂β,所以α⊥β,所以④正确,故选B.3.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐角三角形,则必有()A.平面ABD⊥平面ADC B.平面ABD⊥平面ABCC.平面ADC⊥平面BDC D.平面ABC⊥平面BDC解析:选C∵AD⊥BC,AD⊥BD,BC∩BD=B,∴AD⊥平面BDC,又AD⊂平面ADC,∴平面ADC⊥平面BDC.4.一平面垂直于另一平面的一条平行线,则这两个平面的位置关系是________.解析:由线面平行的性质定理知,该面必有一直线与已知直线平行.再根据“两平行线中一条垂直于一平面,另一条也垂直于该平面”得出两个平面垂直相交.答案:垂直相交5.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.解析:①中a与b可能相交或异面,故不正确.②垂直于同一直线的两平面平行,正确.③中存在γ,使得γ与α,β都垂直.④中只需直线l⊥α且l⊄β就可以.答案:②③④二保高考,全练题型做到高考达标1.(2017·青岛质检)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是()A.a⊥α,b∥β,α⊥β B.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥β D.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体PABC中直角三角形的个数为()A.4 B.3C.2 D.1解析:选A由PA⊥平面ABC可得△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,所以△ABC是直角三角形,且BC⊥平面PAB,所以BC⊥PB,即△PBC为直角三角形,故四面体PABC中共有4个直角三角形.3.(2017·南昌模拟)设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β()A.不存在 B.有且只有一对C.有且只有两对 D.有无数对解析:选D过直线a的平面α有无数个,当平面α与直线b平行时,两直线的公垂线与b确定的平面β⊥α,当平面α与b相交时,过交点作平面α的垂线与b确定的平面β⊥α.故选D.4.(2017·吉林实验中学测试)设a,b,c是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是()A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α时,若b⊥β,则α⊥βC.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bD.当b⊂α,且c⊄α时,若c∥α,则b∥c解析:选BA的逆命题为:当c⊥α时,若α∥β,则c⊥β.由线面垂直的性质知c⊥β,故A正确;B的逆命题为:当b⊂α时,若α⊥β,则b⊥β,显然错误,故B错误;C的逆命题为:当b⊂α,且c是a在α内的射影时,若a⊥b,则b⊥c.由三垂线逆定理知b⊥c,故C正确;D的逆命题为:当b⊂α,且c⊄α时,若b∥c,则c∥α.由线面平行判定定理可得c∥α,故D正确.5.(2017·贵阳市监测考试)如图,在三棱锥PABC中,不能证明AP⊥BC的条件是()A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:选BA中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A能证明AP⊥BC;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C能证明AP⊥BC;由A知D能证明AP⊥BC;B中条件不能判断出AP⊥BC,故选B.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有____________;与AP垂直的直线有________.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,又∵AP⊂平面PAC,∴AB⊥AP,与AP垂直的直线是AB.答案:AB,BC,ACAB7.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:连接AC,BD,则AC⊥BD,∵PA⊥底面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC)8.如图,直三棱柱ABCA1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF由已知可以得A1B1=eq\r(2),设Rt△AA1B1斜边AB1上的高为h,则DE=eq\f(1,2)h.又2×eq\r(2)=h×eq\r(22+\r(2)2),所以h=eq\f(2\r(3),3),DE=eq\f(\r(3),3).在Rt△DB1E中,B1E=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),3)))2)=eq\f(\r(6),6).由面积相等得eq\f(\r(6),6)×eq\r(x2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2)=eq\f(\r(2),2)x,得x=eq\f(1,2).即线段B1F的长为eq\f(1,2).答案:eq\f(1,2)9.(2016·贵州省适应性考试)已知长方形ABCD中,AB=3,AD=4.现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.(1)试问:在折叠的过程中,直线AB与CD能否垂直?若能,求出相应a的值;若不能,请说明理由.(2)求四面体ABCD体积的最大值.解:(1)直线AB与CD能垂直.因为AB⊥AD,若AB⊥CD,因为AD∩CD=D,所以AB⊥平面ACD,又因为AC⊂平面ACD,从而AB⊥AC.此时,a=eq\r(BC2-AB2)=eq\r(16-9)=eq\r(7),即当a=eq\r(7)时,有AB⊥CD.(2)由于△BCD面积为定值,所以当点A到平面BCD的距离最大,即当平面ABD⊥平面BCD时,该四面体的体积最大,此时,过点A在平面ABD内作AH⊥BD,垂足为H,则有AH⊥平面BCD,AH就是该四面体的高.在△ABD中,AH=eq\f(AB·AD,BD)=eq\f(12,5),S△BCD=eq\f(1,2)×3×4=6,此时VABCD=eq\f(1,3)S△BCD·AH=eq\f(24,5),即为该四面体体积的最大值.10.(2017·河南省八市重点高中质量检测)如图,过底面是矩形的四棱锥FABCD的顶点F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若点G在CD上且满足DG=GC.求证:(1)FG∥平面AED;(2)平面DAF⊥平面BAF.证明:(1)因为DG=GC,AB=CD=2EF,AB∥EF∥CD,所以EF∥DG,EF=DG.所以四边形DEFG为平行四边形,所以FG∥ED.又因为FG⊄平面AED,ED⊂平面AED,所以FG∥平面AED.(2)因为平面ABFE⊥平面ABCD,平面ABFE∩平面ABCD=AB,AD⊥AB,AD⊂平面ABCD,所以AD⊥平面BAF,又AD⊂平面DAF,所以平面DAF⊥平面BAF.三上台阶,自主选做志在冲刺名校1.(2017·兰州市实战考试)α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是________.解析:由题意得,AB∥CD,∴A,B,C,D四点共面,①:∵AC⊥β,EF⊂β,∴AC⊥EF,又∵AB⊥α,EF⊂α,∴AB⊥EF,∵AB∩AC=A,∴EF⊥平面ABCD,又∵BD⊂平面ABCD,∴BD⊥EF,故①正确;②不能得到BD⊥EF,故②错误;③:由AC与CD在β内的射影在同一条直线上可知平面ABCD⊥β,又AB⊥α,AB⊂平面ABCD,∴平面ABCD⊥α.∵平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,∴EF⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥EF,故③正确;④:由①知,若BD⊥EF,则EF⊥平面ABCD,则EF⊥AC,故④错误,故填①③.答案:①③2.如图,在四棱锥SABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且点P为AD的中点,点Q为SB的中点.(1)求证:CD⊥平面SAD.(2)求证:PQ∥平面SCD.(3)若SA=SD,点M为BC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.解:(1)证明:因为四边形ABCD为正方形,所以CD⊥AD.又因为平面SAD⊥平面ABCD,且平面SAD∩平面ABCD=AD,所以CD⊥平面SAD.(2)证明:如图,取SC的中点R,连接QR,DR.由题意知:PD∥BC且PD=eq\f(1,2)BC.在△SBC中,点Q为SB的中点,点R为SC的中点,所以QR∥BC且QR=eq\f(1,2)BC,所以PD∥QR,且PD=QR,所以四边形PDRQ为平行四边形,所以PQ∥DR.又因为PQ⊄平面SCD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度人工智能产业投资转借款合作协议模板3篇
- 国防建设知识
- 二零二五年度个人知识产权侵权纠纷授权委托书3篇
- 二零二五年度商场消防安全责任协议书3篇
- 二零二五年度城市停车场信息化建设承包协议3篇
- 二零二五年办公楼智能安防与保洁服务合同3篇
- 二零二五版海洋石油钻井平台外派海员聘用合同范本3篇
- 二零二五年度商品房团购项目合作代理协议3篇
- 二零二五年度高校研究生学术交流活动合作协议3篇
- 艺术地坪施工方案
- 医疗废物集中处置技术规范
- 卫生健康系统安全生产隐患全面排查
- 媒介社会学备课
- GB/T 15114-2023铝合金压铸件
- 三相分离器原理及操作
- 新教科版五年级下册科学全册每节课后练习+答案(共28份)
- 货物验收单表格模板
- 葫芦岛尚楚环保科技有限公司医疗废物集中处置项目环评报告
- 600字A4标准作文纸
- GB/T 18015.2-2007数字通信用对绞或星绞多芯对称电缆第2部分:水平层布线电缆分规范
- 2007年迈腾3.2发动机维修手册
评论
0/150
提交评论