江苏省扬州市邗江实验重点名校2023学年中考数学押题卷含解析_第1页
江苏省扬州市邗江实验重点名校2023学年中考数学押题卷含解析_第2页
江苏省扬州市邗江实验重点名校2023学年中考数学押题卷含解析_第3页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市邗江实验重点名校2023学年中考数学押题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A. B. C. D.2.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1C.323.在实数,,,中,其中最小的实数是()A. B. C. D.4.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1085.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()A. B.C. D.6.﹣3的相反数是()A. B. C. D.7.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105 B.2.6×102 C.2.6×106 D.260×1048.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60° B.35° C.30.5° D.30°9.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是()A. B. C. D.10.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1B.2C.1D.–211.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为()A. B. C. D.12.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为()A.2 B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在实数范围内分解因式:x2y﹣2y=_____.14.抛物线(为非零实数)的顶点坐标为_____________.15.函数y=中自变量x的取值范围是_____.16.已知二次函数的部分图象如图所示,则______;当x______时,y随x的增大而减小.17.一个圆锥的三视图如图,则此圆锥的表面积为______.18.如果正比例函数的图像经过第一、三象限,那么的取值范围是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?20.(6分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.21.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.22.(8分)如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:△ABE≌△DCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.23.(8分)根据图中给出的信息,解答下列问题:放入一个小球水面升高,,放入一个大球水面升高;如果要使水面上升到50,应放入大球、小球各多少个?24.(10分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25.(10分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?26.(12分)先化简,再求值:(x﹣2﹣)÷,其中x=.27.(12分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【答案解析】

根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【题目详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【答案点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.2、B【答案解析】

根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.【题目详解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中点,∴CD=12AB=12∵E,F分别为AC,AD的中点,∴EF是△ACD的中位线.∴EF=12CD=12故答案选B.【答案点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.3、B【答案解析】

由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【题目详解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的实数为-2;

故选:B.【答案点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.4、C【答案解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:5300万=53000000=.故选C.【答案点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).5、B【答案解析】

找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【题目详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.故选:B.【答案点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6、D【答案解析】

相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【题目详解】根据相反数的定义可得:-3的相反数是3.故选D.【答案点睛】本题考查相反数,题目简单,熟记定义是关键.7、C【答案解析】

科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【题目详解】260万=2600000=.故选C.【答案点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.8、D【答案解析】

根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理即可解答.【题目详解】连接OB,∵点B是弧的中点,∴∠AOB=∠AOC=60°,由圆周角定理得,∠D=∠AOB=30°,故选D.【答案点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.9、C【答案解析】

根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【题目详解】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|c|,ab<0,,,故选:C.【答案点睛】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.10、C【答案解析】

把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.【题目详解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故选C.【答案点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.11、A【答案解析】测试卷分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.设BD=a,则OC=3a.∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴点C(a,a).同理,可求出点D的坐标为(1﹣a,a).∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.12、C【答案解析】解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、y(x+)(x﹣)【答案解析】

先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【题目详解】x2y-2y=y(x2-2)=y(x+)(x-).故答案为y(x+)(x-).【答案点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.14、【答案解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.【题目详解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以抛物线的顶点坐标为(-1,1-m),故答案为(-1,1-m).【答案点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.15、x≥﹣且x≠1.【答案解析】

根据分式有意义的条件、二次根式有意义的条件列式计算.【题目详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案为:x≥-且x≠1.【答案点睛】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.16、3,>1【答案解析】

根据函数图象与x轴的交点,可求出c的值,根据图象可判断函数的增减性.【题目详解】解:因为二次函数的图象过点.

所以,

解得.

由图象可知:时,y随x的增大而减小.

故答案为(1).3,(2).>1【答案点睛】此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.17、55πcm2【答案解析】

由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.【题目详解】由三视图可知,半径为5cm,圆锥母线长为6cm,

∴表面积=π×5×6+π×52=55πcm2,故答案为:55πcm2.【答案点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.18、k>1【答案解析】

根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.【题目详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-1>0,解得:k>1,故答案为:k>1.【答案点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、自行车速度为16千米/小时,汽车速度为40千米/小时.【答案解析】

设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【题目详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.20、(1)证明见解析;(2).【答案解析】

(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.【题目详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.21、(1)详见解析;(2)10.【答案解析】

①只需证明两对对应角分别相等可得两个三角形相似;故.

②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.【题目详解】①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP与△PDA的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x,则OB=x,CO=8−x.在△PCO中,∵∠C=90∘,CP=4,OP=x,CO=8−x,∴x2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB的长为10.【答案点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.22、(1)证明见解析;(2)证明见解析【答案解析】(1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;(2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.证明:(1)如图,∵AB∥CD,∴∠B=∠C.∵BF=CE∴BE=CF∵在△ABE与△DCF中,,∴△ABE≌△DCF(SAS);(2)如图,连接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E为顶点的四边形是平行四边形.23、详见解析【答案解析】

(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【题目详解】解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.(1)设应放入大球m个,小球n个,由题意,得,解得:.答:如果要使水面上升到50cm,应放入大球4个,小球6个.24、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【答案解析】测试卷分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;(1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;(2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.测试卷解析:(1)∵抛物线经过点C(0,4),A(4,0),∴,解得,∴抛物线解析式为y=﹣x1+x+4;(1)由(1)可求得抛物线顶点为N(1,),如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得,解得,∴直线C′N的解析式为y=x-4,令y=0,解得x=,∴点K的坐标为(,0);(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴当m=1时,S△CQE有最大值2,此时Q(1,0);(4)存在.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F的坐标为(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,过点F作FM⊥x轴于点M.由等腰三角形的性质得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴点O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论