版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
abab.1.1Whatwillbethegaugeand(b)theabsolutepressureofwaterdepth12mbelowthesurface?ρwater=1000andPatmosphere101kN/m2.Solution:Rearrangingtheequation1.1-4ppba
ghpressureoftobezero,thendepth12mbelowsurfaceispp10009.81kPabpressurewaterat12mppb
gh1010001000218720PakPa1.3Aasshownmeasurepressurethereadingtheinequal.fluidBmethane(烷),thatCingravity=andthatliquidAinUwater.The51mm,IfthereadingofmanometerthepressuretheinstrumentInofwhenthechangeinthethereservoirsis(b)whenthechangeintheintakenintoaccount?inanswertothe(a)?:=1000kg/m
=815kg/m3
3
D/d=8R=0.145mthepressuretworeservoirsisincreased,thechangesinreservoirsandUtubes4
D
4
d
so
hydrostaticfollowingrelationshippgpg12sop)12
theequation(2)forxintogivesppR()gA
()intheintheis123123ppRR(
)(Ac
.)0.145815263PaAc(bthechangeintheintakenaccountpp
R(
gcR(
g9.810.145815281.851error=
281.8281.8
6.7%1.4twoU-tubefluidasinthereadingsoftwoU-tube=400mm=50mm,Theindicatingliquidisofwithpreventfromthediffusingintoandheight=50mm.TrycalculatepressurepointandFigureforproblem1.4Thereagaseousmixtureinmanometermeter.Thedensitiesofareby
,
2O
,
ThepressurepointAisbyhydrostatic12111211.p
O
gR()Hg2g2
g
isnegligibleinwith
Hg
ρH2O
equationbepA
c
=
2O
gR3
2=1000×9.81×0.05+13600×9.81×0.05=7161N/m²ppDA
=7161+13600×9.81×0.4=60527N/m1.5Waterdischargesfromthethewhichdiameterisd.ratiooftodequals1.25.Theverticalbetweentheofdrainpipe2m.heightHthecenterlineofdrainpipewaterinreservoirrequiredforthewaterthetankAtotheofthethatfluidflowpotentialThetankandtheexitof
p
allopenair.H
D
dp
hFigureforproblem1.5ASolution:Bernoulliequationwrittenbetweenand2-2,withbeingreferenceplane:pp122Whereppusimplificationofequationu2Hg22oD44111221211212oD44111221211212.Therelationshipvelocityoutletandvelocitycanthe2u
u
Bernoulliequationwrittenbetweenthestationpu200
Combining1,2,andgivesu2112Hg===21.2510002.44forHH=1.39m1.6AwithaρhorizontalpipeofAm2
isflowingunknownthroughat,andthenittosectionoftheinreduced2
pressureisAssumingfrictioncalculateVandifthepressuredifference(-p)is:Fig1.6,flowdiagramisshownwithpressuretapstopp.Fromthemass-balancecontinuity,constantρρ=ρ,2222.A12theitemstheBernoulliequationahorizontalpipe,z=1ThenBernoulliequationbecomes,after2212p2p011012Rearranging,
A12
V2p12
2(1
1
V=
PerformingsamederivationtermsofV,2p=1
1.7Aofviscosityisflowscriticalforlaminarflowincircularpipeofdandwithmeanthatthepressureinlengthofpipe
32isL
OilofPasflowsofdiameter0.1mwithaof0.6m/s.RRABABBARRABABBA.Calculatelossofinalengthof:heforasectionfoundallcrosssectionanddividingbythecross-sectionalareaV
A0
2
profileforlaminarL
equationforintoequationandintegratingV
p0LD
2
332L2320.05d
PaInverticalwater,pressureareinsertedAandBwherethepipeare0.15mThebelowAandwhentheflowratedown0.02/s,atBN/m2
greaterthatattheintheAandB2expressedwhereisthevelocityatA,findthe2
Figureforproblem1.8ofk.IftheABtubesfilledwithwatertoaU-tubecontainingmercuryofgivesketchtheintheofthediffercalculatevalueofthisinSolution:=0.15m;z-z=lQ/s,-pN/m2BAhfcd1BAhfcd1.
4
d
d4
0.020.15
m/
4
d
d4
0.020.7850.075
mthefluidflowsdown,writingbalancep
g
B2
VA222.5
1.132147154.5321.1321000
214.7150.638k
makingthestaticequilibriump
gHgR
pHg
147159.81126009.81
mm.liquidflowsdownthroughthefromtheathethetubefromthecstationd,infigure.Twosegmentsofthecdthesametheand(1the
ab
fab
cd
h
Figureforproblem1.9(2therelationshipRRtheUtube.Solution:h
fab
lV2d2ab1d21ab1d21.hso
lVdfabFluidflowsfromstationatostationconservationppabhence
fabpa
fab
tostationpphence
p
d
static=R(-)g-lρg=R(-)gSubstitutingequationinequation2,then
1
fabh
fab
1
g
Substitutingequationinequation3,thenh
2
g
ThusR=R22.Waterpassesapipediameteri=0.004withtheinWhatthepressureflowsthroughlengthinHOFindmaximumvelocityandpointrwhichitFindtherwhichtheaveragevelocity
Lequalsifkerosenethroughthispipevariables?(theandWaterarePas
rkg/m
,;theviscositydensityofarePasand
Figureforproblemkg/m3
,respectively)solution:)
ud0.0040.001
Hagen-Poiseuilleequation
32d2
0.40.0010.0042
h
160010009.81
m)occursatthe0.5uso=0.4×2=0.8m)u=V=0.4m/su
umax
rr
r10.004
Vu
0.5r0.0040.004kerosene:
ud0.003
0.00316004800ee.h
48009.81
0.611Asshowninthekeepsconstant.Asteel(withtheofisU-tubeistothethefromtheofthereservoir,andtheUisfilledwithmercuryandtheleft-sidearmoftheUtheiswithwater.distancebetweentheandthepipelineis20m.a)Whenvalveisgatevalveispartly,h=1400mm.Thefrictioncoefficientλis0.025,losscoefficientofentranceis0.5.Calculaterateofwatergatevalveispartly.(in/h)thegateiswidelyopen,attap(inpressure,N/m²).l/≈15valveopen,thefrictioncoefficientλis0.025.Figureforproblem:Whenthevalveisopenedtheequationbetweensurfaceofreservoir1—
’
thesectionofpoint2,andthecenter’then
2pu12
f—2
()Intheequation
(thepressure)pgR2Hg
O
ghN/
2.0thevalvefullyclosed,theheightofwaterlevelinthereservoircanrelateddistancebetweenthemeniscusofleftU
HO
g(Z)gR1Hg
(bh=1.5mubstitutetheknownvariablesintoequationb
136001000
h
f_2
lV215K)d0.12
2.13V
thea9.81×6.66=
V396302.1321000
2theisVtheflowrateofwaterisV3600
4
d
4
0.1288.5m
/)thepressureofpointwhereismeasuredvalvemechanicalenergystations—1
,then1
p
3
32
p3
h
f3
(c)
6.66Z3u01p1
3
f3
l
)
2[0.025(
V24.81
2inputintoequationc,
6.66
V22
22c2c.theis:Vmechanicalenergybetween—’and——2’,forthesamesituationwater
pV2p11122h226.66
f,1—
(dZ21m/20(page)1
f,1_2
l2K)(0.025J/2inputintoequationd9.81×6.66=theis:
3.51p2100032970
26.2℃passesthroughawithanof300mmandlong.Thereisattached-pipe(Φ60whichwiththepipe.lengthincludingequivalentlengthofformoftheattached-pipe10m.Arotameterinbranchpipe.readingoftheis3
/h,calculateflowratethepipeandtheThecoefficientoftheisand0.03,:ofmainpipedenotedbyasubscript1,bysubscript2.Thefrictionforparallel
h
f
f2V1
S2Theenergyinthebranchpipeis
h
f
ld
2
u2Intheequation
0.0312f2112f21.ll2
2
d2u23600
4
2
/sinputintoequationc
h
f2
100.34320.03/kg0.053Theenergyintheis
f1
f
l21
u1
0.3330.30.018
2.36/ThewaterisVh
4
2.36601
/Totalwaterdischargeism3/hhAVenturimeterisusedforflowofwaterpipe.TheoftheVenturithroatistwofifthsdiameteroftheinletarefilledtubesamanometer.Thevelocityofflowalongfoundtobe2.5R
manometerreadinginmetresoflossofheadinletandofVenturiwhenR(RelativeisSolution:WritingequationbetweeninletandoforVenturip1
pog2
above,z)=p1
2o2
f
continuityequation
Figureforproblemo219.032.52o219.032.52f1300.V1
dd
V6.25
equationforVinto2gives39.06111fRf
xg
f
thehydrostaticequilibriumforpp(1
Hg
x
equationforpressuredifferenceinto4obtains(
118.94
f
6hf
(
123.61118.94RR2.288/kg1.17.Sulphuricacidgravityisflowingapipeof50internaldiameter.Athin-lippedintheanddifferentialbymercuryisAssumingthattheleadstothemanometerarewithacid,(a)theweightofflowingsecond,and(b)frictionincausedbyorifice.Thecoefficientorificemaytakenas0.61,specificgravityofmercuryasdensityofwater10003Solution:a)
100501p(1
Hg
g0.1(136001300)2
o101
4
1
2
20.1(136001300)140.614.31/s22.m
4
D
2
4
0.01
2.631300kgsapproximatedropp(1
Hg
g0.1(136001300)
12066.3Padueofvelocityinthroughorificep2
2o212
1300
(14)2
Padropby4488.8Paf2.1totestforofThepressurethereadingatkPaasflowrate26m3/h.Theshaftiswhilethecentrifugaloperatesthespeedof2900r/min.Ifthedistancebetweenthesuctionand0.4m,thebothlineareCalculateefficiencyofandlisttheoftheunderthisoperatingSolution:themechanicalequationconnection2p2pH2g
H
f_2
pressure)1.522H0f,12totalheadsof
H
51000
5
18.41efficiencyofis
Ne
e
QH10003600
1.3oof1oof1.N=2.45kWefficiency
45
100%Theperformanceofpumpisrate,m³/hTotal,power,,%2.2Wateristransportedbyammvacuum,thetank,inwhichtheis0.5asintotal
2equivalentofpipealllocal
loss.Thepipelineis
1×mmtheorificecoefficientofCandorificediameterd0.62and25mm,coefficientDevelopedHofinm(theofUpressuregaugeinorificeisSolution:Equation(1.6-9)V
(
0.620.1689.81(13600
0.62
6.444.12m/sratemS
3.144
10002.02kg/sFluidflowpipethetotheisforV=VH
p2
H
f2200ovgf2200ovgf.
200760
g=7.7mThebetweenthevelocityofpipeVmsDFrictionlossff
lu20010.025d2g29.81
mso2.3.Acentrifugalistousedtoextractwaterinthemmofmercury,asinfigure.Atratedpositivesuctionbe3mthecavitationvaporofIfinthepipeaccountedforheadof1.5m.Whatmustbeleastheightofliquidlevelintheabove:From
H
gHg
po
HNPSHfWhereUseofwillgivetheminimumheightHasH
ppvNPSH1360010009.81
m2.4Sulphuricatkg/sa60m25mmdropinpressure.Ifthedropfallsbyhalf,whatwilltheflowratebe•
of1840kg/m3•
Viscosityacid×10
PasSolution:Velocityinpipe:dffdff.u
flowratecrosstionalareaof0.78518400.02524
2
/sReynolds
d0.0251840
Fig.1.22forwhendropcalculated1.4-9h4
l2603.32d22
2
/kg1840frictionisfromh4f
llu2603.32446109d20.025
2
426J/kg426783.84kPaifpressuredrop
lu23919200.046Re=40.0462d
d
l1.81.20.0461840
1840
600.0252
sou
391920
2.27m/
ρ=0.785×0.0252×2.27×1840=2.05kg/s2.4Sulphuricatkg/sa60m25mmdropinpressure.Ifthedropfallsbyhalfoffrictionisnegligible,willthenewbeofViscosityacid×10
Friction
f
0.32
forsmoothpipeSolution:12ffof12ffof.energyequation:pup11H22lu22
f4
d
uu
32
121840
3.32msRe
184025
61150.0056
0.00560.00870.32l60h422Δ×1840×9.81=847.0kpa
46.922.6fluidisfromAtoBwithφ
diameterlengthofmeters,figure.orifice16.4mmusedmeasureflowOrificecoefficient=0.63.losspressureis×102,frictionfind:WhatispressurealongAB?Whatisofobliteratedintototalpowerfluidshaftis500W,60%efficiency?(Thefluidis3solution:
)zg
p
u2
pgAh
fpB
lhd
022.u
1
2gR
0.630.68700.97870
/∴u(16.4/33)×8.5=2.1m/s∴
pp
h0.024870f
302.10.033
4m
2Wm
4
d2u768550.7850.033
2
sotheratiopowerinfrictionlossesinABpowerfluid1385000.6
%%3.2Aquartzose(颗粒)withdensityof2650(淀)freelyinthe℃trytocalculatethemaximumdiameterStockslawandtheminimumdiameterobeyinglaw.olution:hegravitysettlingfollowedStocks’maximumsettledbeRethatis1Ret
dut
thent
fortheterminalc
(cSsolvingcriticaldiameterdc
(
Thedensityof20airρkg/m³viscosityµ=1.81×10N·2pttptt.d1.2243
)(26501.205)1.205m
m≥lawandterminalvelocitycanbecalculatedbygdu1.75criticalReynoldsnumber
Ret
d
c
ut
,
givest
combinationofwith3d1.74cdcsolvingcriticaldiameterd
3c
d
c
)21.205)1.2051.5121512um
m3.3Itisdesiredremoveparticles50infrom226.5m
ofusingasettlingforThetemperatureare21
C1atm.Theparticledensityis3.Whatminimumdimensionsofthechamberareconsistentwith(themaximumoftheairsolution:calculateterminalvelocityfromtheequation3.2-16.Thedensityof21airρkg/m³viscosityµ=1.81×10N·2ut
d
18
2
m/s
t
soBL
Q20.86mu60t
2
LHuutthepermissibleoftheairis3m/sLH30.181
setbemthenequationLmH3.4Acycloneusedtoseparatedustofof2300kg/m³fromTheflowgas/h,ofthe·s/m²,kg/3
Ifdiameterofcycloneis400mm,totheSolution:D=0.4mBDDui
Q1000/shB0.2Accordingtothefor:d
(
99(3.6m0)i3.6Apressof
filteringareaisusedforfilteringaslurry.Thefiltrationcarriedoutconstantpressurewith500mmHg.Theoffiltratecollectedinthefirstwasoneliterafurther5min,an0.6literwasHowmuchfiltratewillbefiltrationoutfor15minassumingcakebeincompressible?mfm0.00930.0093mfm0.00930.0093.heforconstant-pressureKAt5min
l.
1
2
VK0.1
2
10min
l
2
V0.1
2
solvingequationsaboveVandK
KFor
min
V
22
forV=2.073l3.7Thefollowingareforafilterpressofm
filteringareaintestPressuredifference/kg2
filteringtime/s50×-39.10-32.27×-39.10×-3filtrationconstantKatthepressure1.05iftheofthefilterfilledwiththecake660s,whatisthefinaloffiltrationdt
Eandconstantofn?①fromq
Kt
For
p1.05
㎏/㎝2.27
2
0.0093
2
K
solvingequationsandgivesqm
mm
32
K
m
2
/0.00930.00930.00930.0093.②KAdt2(E
=
m3/For
3.5
㎏㎝2
2.270.0093
q
m
m
solvingequationsandgivesq
m
mm
32
K
m
2
/4.37
1
1
lnsolvingn3.8Aslurryiffilteredbyfilter2aconstantfiltration2t
filteringareaconstantequationforq=filtratefilteringarea,inl/m2,filteringinminfiltratewillafter249.6min?Ifpressuredifferencebothresistancesoffiltrationmediumandcakearehowmuchfiltratewillbeafter249.6min?solution:q
2
250(250(249.6
22V=24lq11222mq11222m.thedifferenceisKK
1.41250l
l3.9Filtrationoutplatefilterwith20frames0.3and50mmthick.Atapressuredifferenceof248.7kN/m
one-quarterofthetotalfiltratecycleisobtainedforfirst300s.Filtrationiscontinuedataconstantforfurther1800s,theframesfull.Thetotalfiltrate0.7
dismantlingandtakes500sItdecidedusearotaryfilter,1.5mindiameter,placeoffilterpress.thattheresistanceofthesamethatthefilterisspeedofrotationofdrumwhichwillinsameratefiltrationaswaswithfilterpress.Thefiltrationinthefilterisoutconstantof2
with25%ofthesubmergedSolution:filtration:A=2×0.32×20=3.6mΔp2tV×0.7=0.175m3tt3tV0.175
2
V
2
t3.6
2
300KV3.622100KV=0.2627m3K
0.723.62
Vm210012.96
Q
2100500
2.692
m
/fortherotarydrumfiltermmmmmm.filtration:AdL×2.2×1.52pressure:=70kN/m2thedrumsubmerged:ForrotarydrumfiltrationkeepVKchangeswithchanginginK
703.1517248.7
thecapacityofdrumfilteristooffilter
10.3622
0.2627
0.2627
fortheequationtrialand
0.0002381nVK20.0690.2627mm转/min)Afilterof0.093m2
filteringwasusedsuspensioncontainingcarbonate,operatinginpressure.Thefiltratecollected2.27×103
duringthe50volumeofcollected3.35×10
3
duringthe100s.Howwillfiltratebefilteringfor:filteringaream
;filtrate-3
3
fort=50sandV=3.35×10
3
fort=100sforpressurefiltrationKAtvariablesgivengives
2
2.27
0.093
2
2
2
2
combining12V=3.85×10-4
3
-5
2
/sSubstitutionofandKforconstant-pressureequationVVA2tsolvingvolumeofgainedfor200smm.V-3
3Aslurrywithcakeis
filterconstantpressure.IfthefilteringconstantK2
/min,operatingpressuredifference
2atmtheresistancecanbeFindthefiltratevolume,in
filtering10ifthebeandVis1m
whatfiltratevolumeV,in3
filtering10?whatfiltrationdV/dtwhenthe10forcase(1)?Solution:forconstant-pressure
2
2
tfiltersetnegligibleV2KA2VAKt
②Thefilteringmediumtakenaccount
2
2
tV2V
2
9.05m
③theequationforconstant-pressurefilteringisderivativeasmediumresistancedoesntbeaccountdV210dt22Aflatwallconstructedofalayerofbrick,withaconductivityof0.138W/(m·°C)bycommonbrick,conductivityW/(m·°C).temperatureofinnerofthewallisC,andof76.6°C.()Whatheatthroughthewall?(Whattemperatureoftheinterfacebrickcommonbrick?(c)Supposingbetweenthetwobricklayerspoorthata“contactresistance”of2/Wpresent,theloss?Solution:iioooiiooo.heatloss:
qA
i
BB2kk2
7600.1140.1381.38
688.89/m
temperatureinterface:/AB1k0.1381℃
2(c)is0.088°C·m2
/W,heatloss:qA
i
760BB0.1140.2290.088kk1.38
W/m
(dbyk=0.615C).IfthetemperatureofoutersurfaceofpipeCtemperaturethelayeris38C,whataretheheatlosstemperaturewithinlayer?:Similartoinseriesthroughtheflatwall,thetotalresistanceacrossinsulating
B0.615
0.426)/ln(1.278/0.426)LLHeatpertubewallq177589.7WLtemperatureqLR
177
r0.213
589.7/mt2277.5
routerdiameterofasteel150mm.Thetubebackedtwolayersheatofconductivityoftwoinsulatingmaterials1i1oiioop1i1oiioop/21
.bothinsulatingmaterialsthesamethicknessIfthedifferencebetweenwallandsurfaceinsulatingconstant,insulatingmaterialshouldbepackedinsideheatsolution:k(lower)thewithlowerconductivity
i
bk1
bk
A
2
L(r)3r3r2
m
L(r)21r2r1
thicknessoftwolayersareequalb=b=b,
/22
k11
12
1AAm2contrarily,materialwiththermalconductivityinside,kQbbb1112AkA2A2A1mm2m11mm1m1QA2Amm2
for
12
sowithheatobtainedasthematerialwiththermalconductivityisAiratnormalpressurethrough20andiso
C.Whatfilmheattransfercoefficienthpipewalliftheaveragevelocityofairis10m/s?propertiesat60CAir:densitykg/m,viscosityµ=0.02conductivityW/(mC),=1kJ/(kgSolution:piodipiodi.
du
0.02
0.0289
0.023
di
0.8
106000.02
0.8
0.4
0.03324Methylalcoholflowinginthepipeofadouble-pipecooledwithwaterflowinginthejacket.Theinnerfrom25-mmTheconductivityofsteelisW/(m·oandfoulingareinthefollowingTable.Whatoverallcoefficient,ontheoutsideofinnerpipe?Datafor8W/(m
hWatercoefficientInsidefoulinghfoulingfactorSolution:equation
do
U
dbd1hhkhhidiiiooappendixthewallthickness3.25mmandoutsidediameterisfornominaldiameter25mmSchedulestandardsteelpiped
2
30.25mmoiokmpoiokmp.U
2.1841.2167.9983.521
/
o
CBenzenewithmass1800kgthroughthedoublepipeexchanger.fromo
Cto
C.TheofinnerisandtheouterWhatisindividualtransfercoefficientbenzene?Solution:diameterinner=19mm,insidediameteroftubeTheequivalentdiameterofannulartube
(2)D)i
32mmioequationh0.023
k
u
80t2
thebenzene:-3Pas,,℃ρ=850kg/m
attemperatureof50℃velocityofbenzeneflowingthroughthespaceofisas
4
(2)uiu
42)36000.0322io
1.13m/Substitutingtheintoequation1givespko12ppoipko12ppoi.h
k
e
0.4=
0.0130.45
3
0.40.24427748
2
4.10.Air2atmand20Cinthepipeoftubular80ofis57×3.5mmitslengthislong.Whattransfercoefficientofside?olution:ofairatinletandoot2080t122
o
Cofair
Cμ=0.019×10Pas,densityatonideallaw,
229273)
kg/m311,air
2
0.028
W/mKApp.13heatofair=1KJ/kgKThevelocityofairflowingthroughtubeu
4603.140.05
8.49
m/s
du
0.019
48884.5
10.028
0.68h
k0.0280.0230.8Pr0.4dd0.05
W/m2
K4.12.Ahotfluidwithaflowrate2250through25x2.5mmtube.physicalofareasfollows:C),c
=4kJ/(kgNdensityHeatfilminW/(miio1/30.81/3p11iio1/30.81/3p11.If1125kg/hotherconditionswhatishIfof(inside10mm,andthethesameasofcalculatethetemperatureoffluidandquantityofheatflowtubeareW/m,temperatureofwallfora?thisinordertoheattransferfilmcoefficientenhanceheatwhatkindsofmethodscanuseandisHint:forforturbulentflowPrsolution:
u
4236000.02
2
1.99
m/s
du
1.99100010
4
kNuh0.0230.8Prd0.02
2.05503.1/m
2
K
hu
coefficienthasratedecreases1125kg/hhh
0.8
1125
0.8
0.574´=5503.1×0.574=3158.8W/m
Kkh0.023Red
0.8
13hh
0.2
0.2
1.15´2
KffLffL.qAh(t)f
dlht)fwtf
q40040dlh3.140.02
o
Cthevelocityofflowingthesaturatedat100o
Cissaturatedliquidsurfaceofasingleverticalwithanddiametertemperatureofwall92C.WhatisthevaporIfhorizontally,thequantityofvaporperhour?Solution:From6,ofsaturatedat100
oTheaveragetemperatureof℃Thepropertiesofwaterat96
oareasfollows:
Pas(fromappendix=958kg/m
;fromequation
3hof
2
/(
C)m
hA()
3
kg/20.8kg/the
md
0.038
)440.282
flow)Ifisplacedfrom(4.5-14)h
0.729
ffdof
0.773poooioo0.773poooioo.h0.729h
Ld
2.50.7730.0382mhm4.14.Inadoublepipecold(ckJ/(kgflowkg/h)throughthepipehotfluidthroughtheTheinletoffluidareand80C,inletandoutlettemperaturesoffluidare150and90ChinsideaW/(mo
heattransfercoefficientU(basedsurfaceofpipe)300W/(mo
C),Ifheatisandthewall(steel)takenas45W/(mfind:heatpipe?thepipelengthforinispipeifheatingchangestosaturatedC)whichsaturatedliquidconditionstheusedforitisthatitmeetproduction(thetemperatureofcoldfluidcannot80C),explainSolution:(1)FromequationUo
1bd1oodhhiimoo
o1222m112212o1222m112212.0.0017294.868
o
℃writeenergybalanceequation(t)UAUp21
dLo
forcountercurrentflowToto
C
T=90o
∆t1so∆t
=150-80=70C;∆to=70oCtoofdoubleL
(t)21U
50070
T
C
∆to;∆tCt
C
tC
sot22L
mc(t)Uo
mct)1mtU36003000.023U12oolndepositingonthesurfacesofthegiveadditionalthermaloooiiiiioiooooooiiiiioiooo.15.WaterturbulentlyinthethevelocityofwaterVistransfercoefficientU(basedoutersurfacepipe)W/(m2
C).Ifthe1.5m/sUis2660W/(m
CWhatisfilmhoutside(Heatofpipewallandscaleignored)Solution:equation(4.3-37),neglectingthermalresistanceoftubewallU
111thevelocityofis1m/s,coefficientoftowalloftubesiscoefficientUo
2115
oftheindividualwaterwallofh,tohby
0.8
1.5
0.8
coefficientisUo
i
hi
solving1and2forhandh=2858W/(m
);hm2
4.17.Waterpassparallellythroughexchangerwhich1mlong.inletandoutletofwater15CandC,andthoseareand100Iftheofdecreasestotheflowandphysicalp222oop222oo.inlettemperatureswaterwhatlengthofexchanger?(Heatwallare:energyforforwater
q100)1qc15)2
qc(150100)c80)UA1p2differentoperatinginparallel℃15010060℃13560℃135ln60
foroil
c(1501p1
()forwater
qmct22
(5qcc(t111p
2
qmcmctqm100)cUAp2solvingfort℃temperaturedifference℃5030℃135℃135ln30equation
mm
q150Lq150100
solving
L
=1.86L4.18.Airwhichpipeinturbulentflowisheatedfrom20Cto80C.ThesaturatedatCsaturatedthepipe.Ifrateoforiginandinlettemperaturesofairwhatkindof.employintodothat?(Heatresistancewallscalebe:temperatureofair:
t
202
=50Ctheairat℃
1.093
kg/m3
c1.017p
kJ/kg.k
k
thevaporpressureofsteamtomeettheforrisingintherateofair20%,temperatureofdenotedbyTq(8020)p
(1q
20)p
(2mm∵coefficientwithchangeisverycomparedwithcoefficientofair,theofsideinwithresistanceandUh1.2Uh
0.8
1.157
ln
80
61.5
℃
temperatureof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度主题餐饮商铺租赁管理合同
- 二零二五年度边境运输合同纠纷管辖权跨境协议
- 二零二五年度稻谷种植与乡村旅游融合发展合同
- 2025年度白酒全国总代理合同-品牌授权与市场运营协议
- 二零二五年度商业写字楼租赁合同终止书
- 2025年度石材行业市场调研与咨询合同
- 2025年度多功能车库租赁及综合性服务合同
- 二零二五年度建筑工拖欠工资无合同纠纷调解协议书
- 2025年度采石场租赁合同生态补偿与恢复协议
- 2025年度火锅店线上线下营销推广合作协议
- 2024年供应链安全培训:深入剖析与应用
- 飞鼠养殖技术指导
- 坏死性筋膜炎
- 整式的加减单元测试题6套
- 股权架构完整
- 山东省泰安市2022年初中学业水平考试生物试题
- 注塑部质量控制标准全套
- 银行网点服务礼仪标准培训课件
- 二年级下册数学教案 -《数一数(二)》 北师大版
- 晶体三极管资料
- 石群邱关源电路(第1至7单元)白底课件
评论
0/150
提交评论