Unit-Operations-of-Chemical-Engineering(化工单元操作)_第1页
Unit-Operations-of-Chemical-Engineering(化工单元操作)_第2页
Unit-Operations-of-Chemical-Engineering(化工单元操作)_第3页
Unit-Operations-of-Chemical-Engineering(化工单元操作)_第4页
Unit-Operations-of-Chemical-Engineering(化工单元操作)_第5页
已阅读5页,还剩78页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

abab.1.1Whatwillbethegaugeand(b)theabsolutepressureofwaterdepth12mbelowthesurface?ρwater=1000andPatmosphere101kN/m2.Solution:Rearrangingtheequation1.1-4ppba

ghpressureoftobezero,thendepth12mbelowsurfaceispp10009.81kPabpressurewaterat12mppb

gh1010001000218720PakPa1.3Aasshownmeasurepressurethereadingtheinequal.fluidBmethane(烷),thatCingravity=andthatliquidAinUwater.The51mm,IfthereadingofmanometerthepressuretheinstrumentInofwhenthechangeinthethereservoirsis(b)whenthechangeintheintakenintoaccount?inanswertothe(a)?:=1000kg/m

=815kg/m3

3

D/d=8R=0.145mthepressuretworeservoirsisincreased,thechangesinreservoirsandUtubes4

D

4

d

so

hydrostaticfollowingrelationshippgpg12sop)12

theequation(2)forxintogivesppR()gA

()intheintheis123123ppRR(

)(Ac

.)0.145815263PaAc(bthechangeintheintakenaccountpp

R(

gcR(

g9.810.145815281.851error=

281.8281.8

6.7%1.4twoU-tubefluidasinthereadingsoftwoU-tube=400mm=50mm,Theindicatingliquidisofwithpreventfromthediffusingintoandheight=50mm.TrycalculatepressurepointandFigureforproblem1.4Thereagaseousmixtureinmanometermeter.Thedensitiesofareby

,

2O

,

ThepressurepointAisbyhydrostatic12111211.p

O

gR()Hg2g2

g

isnegligibleinwith

Hg

ρH2O

equationbepA

c

=

2O

gR3

2=1000×9.81×0.05+13600×9.81×0.05=7161N/m²ppDA

=7161+13600×9.81×0.4=60527N/m1.5Waterdischargesfromthethewhichdiameterisd.ratiooftodequals1.25.Theverticalbetweentheofdrainpipe2m.heightHthecenterlineofdrainpipewaterinreservoirrequiredforthewaterthetankAtotheofthethatfluidflowpotentialThetankandtheexitof

p

allopenair.H

D

dp

hFigureforproblem1.5ASolution:Bernoulliequationwrittenbetweenand2-2,withbeingreferenceplane:pp122Whereppusimplificationofequationu2Hg22oD44111221211212oD44111221211212.Therelationshipvelocityoutletandvelocitycanthe2u

u

Bernoulliequationwrittenbetweenthestationpu200

Combining1,2,andgivesu2112Hg===21.2510002.44forHH=1.39m1.6AwithaρhorizontalpipeofAm2

isflowingunknownthroughat,andthenittosectionoftheinreduced2

pressureisAssumingfrictioncalculateVandifthepressuredifference(-p)is:Fig1.6,flowdiagramisshownwithpressuretapstopp.Fromthemass-balancecontinuity,constantρρ=ρ,2222.A12theitemstheBernoulliequationahorizontalpipe,z=1ThenBernoulliequationbecomes,after2212p2p011012Rearranging,

A12

V2p12

2(1

1

V=

PerformingsamederivationtermsofV,2p=1

1.7Aofviscosityisflowscriticalforlaminarflowincircularpipeofdandwithmeanthatthepressureinlengthofpipe

32isL

OilofPasflowsofdiameter0.1mwithaof0.6m/s.RRABABBARRABABBA.Calculatelossofinalengthof:heforasectionfoundallcrosssectionanddividingbythecross-sectionalareaV

A0

2

profileforlaminarL

equationforintoequationandintegratingV

p0LD

2

332L2320.05d

PaInverticalwater,pressureareinsertedAandBwherethepipeare0.15mThebelowAandwhentheflowratedown0.02/s,atBN/m2

greaterthatattheintheAandB2expressedwhereisthevelocityatA,findthe2

Figureforproblem1.8ofk.IftheABtubesfilledwithwatertoaU-tubecontainingmercuryofgivesketchtheintheofthediffercalculatevalueofthisinSolution:=0.15m;z-z=lQ/s,-pN/m2BAhfcd1BAhfcd1.

4

d

d4

0.020.15

m/

4

d

d4

0.020.7850.075

mthefluidflowsdown,writingbalancep

g

B2

VA222.5

1.132147154.5321.1321000

214.7150.638k

makingthestaticequilibriump

gHgR

pHg

147159.81126009.81

mm.liquidflowsdownthroughthefromtheathethetubefromthecstationd,infigure.Twosegmentsofthecdthesametheand(1the

ab

fab

cd

h

Figureforproblem1.9(2therelationshipRRtheUtube.Solution:h

fab

lV2d2ab1d21ab1d21.hso

lVdfabFluidflowsfromstationatostationconservationppabhence

fabpa

fab

tostationpphence

p

d

static=R(-)g-lρg=R(-)gSubstitutingequationinequation2,then

1

fabh

fab

1

g

Substitutingequationinequation3,thenh

2

g

ThusR=R22.Waterpassesapipediameteri=0.004withtheinWhatthepressureflowsthroughlengthinHOFindmaximumvelocityandpointrwhichitFindtherwhichtheaveragevelocity

Lequalsifkerosenethroughthispipevariables?(theandWaterarePas

rkg/m

,;theviscositydensityofarePasand

Figureforproblemkg/m3

,respectively)solution:)

ud0.0040.001

Hagen-Poiseuilleequation

32d2

0.40.0010.0042

h

160010009.81

m)occursatthe0.5uso=0.4×2=0.8m)u=V=0.4m/su

umax

rr

r10.004

Vu

0.5r0.0040.004kerosene:

ud0.003

0.00316004800ee.h

48009.81

0.611Asshowninthekeepsconstant.Asteel(withtheofisU-tubeistothethefromtheofthereservoir,andtheUisfilledwithmercuryandtheleft-sidearmoftheUtheiswithwater.distancebetweentheandthepipelineis20m.a)Whenvalveisgatevalveispartly,h=1400mm.Thefrictioncoefficientλis0.025,losscoefficientofentranceis0.5.Calculaterateofwatergatevalveispartly.(in/h)thegateiswidelyopen,attap(inpressure,N/m²).l/≈15valveopen,thefrictioncoefficientλis0.025.Figureforproblem:Whenthevalveisopenedtheequationbetweensurfaceofreservoir1—

thesectionofpoint2,andthecenter’then

2pu12

f—2

()Intheequation

(thepressure)pgR2Hg

O

ghN/

2.0thevalvefullyclosed,theheightofwaterlevelinthereservoircanrelateddistancebetweenthemeniscusofleftU

HO

g(Z)gR1Hg

(bh=1.5mubstitutetheknownvariablesintoequationb

136001000

h

f_2

lV215K)d0.12

2.13V

thea9.81×6.66=

V396302.1321000

2theisVtheflowrateofwaterisV3600

4

d

4

0.1288.5m

/)thepressureofpointwhereismeasuredvalvemechanicalenergystations—1

,then1

p

3

32

p3

h

f3

(c)

6.66Z3u01p1

3

f3

l

)

2[0.025(

V24.81

2inputintoequationc,

6.66

V22

22c2c.theis:Vmechanicalenergybetween—’and——2’,forthesamesituationwater

pV2p11122h226.66

f,1—

(dZ21m/20(page)1

f,1_2

l2K)(0.025J/2inputintoequationd9.81×6.66=theis:

3.51p2100032970

26.2℃passesthroughawithanof300mmandlong.Thereisattached-pipe(Φ60whichwiththepipe.lengthincludingequivalentlengthofformoftheattached-pipe10m.Arotameterinbranchpipe.readingoftheis3

/h,calculateflowratethepipeandtheThecoefficientoftheisand0.03,:ofmainpipedenotedbyasubscript1,bysubscript2.Thefrictionforparallel

h

f

f2V1

S2Theenergyinthebranchpipeis

h

f

ld

2

u2Intheequation

0.0312f2112f21.ll2

2

d2u23600

4

2

/sinputintoequationc

h

f2

100.34320.03/kg0.053Theenergyintheis

f1

f

l21

u1

0.3330.30.018

2.36/ThewaterisVh

4

2.36601

/Totalwaterdischargeism3/hhAVenturimeterisusedforflowofwaterpipe.TheoftheVenturithroatistwofifthsdiameteroftheinletarefilledtubesamanometer.Thevelocityofflowalongfoundtobe2.5R

manometerreadinginmetresoflossofheadinletandofVenturiwhenR(RelativeisSolution:WritingequationbetweeninletandoforVenturip1

pog2

above,z)=p1

2o2

f

continuityequation

Figureforproblemo219.032.52o219.032.52f1300.V1

dd

V6.25

equationforVinto2gives39.06111fRf

xg

f

thehydrostaticequilibriumforpp(1

Hg

x

equationforpressuredifferenceinto4obtains(

118.94

f

6hf

(

123.61118.94RR2.288/kg1.17.Sulphuricacidgravityisflowingapipeof50internaldiameter.Athin-lippedintheanddifferentialbymercuryisAssumingthattheleadstothemanometerarewithacid,(a)theweightofflowingsecond,and(b)frictionincausedbyorifice.Thecoefficientorificemaytakenas0.61,specificgravityofmercuryasdensityofwater10003Solution:a)

100501p(1

Hg

g0.1(136001300)2

o101

4

1

2

20.1(136001300)140.614.31/s22.m

4

D

2

4

0.01

2.631300kgsapproximatedropp(1

Hg

g0.1(136001300)

12066.3Padueofvelocityinthroughorificep2

2o212

1300

(14)2

Padropby4488.8Paf2.1totestforofThepressurethereadingatkPaasflowrate26m3/h.Theshaftiswhilethecentrifugaloperatesthespeedof2900r/min.Ifthedistancebetweenthesuctionand0.4m,thebothlineareCalculateefficiencyofandlisttheoftheunderthisoperatingSolution:themechanicalequationconnection2p2pH2g

H

f_2

pressure)1.522H0f,12totalheadsof

H

51000

5

18.41efficiencyofis

Ne

e

QH10003600

1.3oof1oof1.N=2.45kWefficiency

45

100%Theperformanceofpumpisrate,m³/hTotal,power,,%2.2Wateristransportedbyammvacuum,thetank,inwhichtheis0.5asintotal

2equivalentofpipealllocal

loss.Thepipelineis

1×mmtheorificecoefficientofCandorificediameterd0.62and25mm,coefficientDevelopedHofinm(theofUpressuregaugeinorificeisSolution:Equation(1.6-9)V

0.620.1689.81(13600

0.62

6.444.12m/sratemS

3.144

10002.02kg/sFluidflowpipethetotheisforV=VH

p2

H

f2200ovgf2200ovgf.

200760

g=7.7mThebetweenthevelocityofpipeVmsDFrictionlossff

lu20010.025d2g29.81

mso2.3.Acentrifugalistousedtoextractwaterinthemmofmercury,asinfigure.Atratedpositivesuctionbe3mthecavitationvaporofIfinthepipeaccountedforheadof1.5m.Whatmustbeleastheightofliquidlevelintheabove:From

H

gHg

po

HNPSHfWhereUseofwillgivetheminimumheightHasH

ppvNPSH1360010009.81

m2.4Sulphuricatkg/sa60m25mmdropinpressure.Ifthedropfallsbyhalf,whatwilltheflowratebe•

of1840kg/m3•

Viscosityacid×10

PasSolution:Velocityinpipe:dffdff.u

flowratecrosstionalareaof0.78518400.02524

2

/sReynolds

d0.0251840

Fig.1.22forwhendropcalculated1.4-9h4

l2603.32d22

2

/kg1840frictionisfromh4f

llu2603.32446109d20.025

2

426J/kg426783.84kPaifpressuredrop

lu23919200.046Re=40.0462d

d

l1.81.20.0461840

1840

600.0252

sou

391920

2.27m/

ρ=0.785×0.0252×2.27×1840=2.05kg/s2.4Sulphuricatkg/sa60m25mmdropinpressure.Ifthedropfallsbyhalfoffrictionisnegligible,willthenewbeofViscosityacid×10

Friction

f

0.32

forsmoothpipeSolution:12ffof12ffof.energyequation:pup11H22lu22

f4

d

uu

32

121840

3.32msRe

184025

61150.0056

0.00560.00870.32l60h422Δ×1840×9.81=847.0kpa

46.922.6fluidisfromAtoBwithφ

diameterlengthofmeters,figure.orifice16.4mmusedmeasureflowOrificecoefficient=0.63.losspressureis×102,frictionfind:WhatispressurealongAB?Whatisofobliteratedintototalpowerfluidshaftis500W,60%efficiency?(Thefluidis3solution:

)zg

p

u2

pgAh

fpB

lhd

022.u

1

2gR

0.630.68700.97870

/∴u(16.4/33)×8.5=2.1m/s∴

pp

h0.024870f

302.10.033

4m

2Wm

4

d2u768550.7850.033

2

sotheratiopowerinfrictionlossesinABpowerfluid1385000.6

%%3.2Aquartzose(颗粒)withdensityof2650(淀)freelyinthe℃trytocalculatethemaximumdiameterStockslawandtheminimumdiameterobeyinglaw.olution:hegravitysettlingfollowedStocks’maximumsettledbeRethatis1Ret

dut

thent

fortheterminalc

(cSsolvingcriticaldiameterdc

(

Thedensityof20airρkg/m³viscosityµ=1.81×10N·2pttptt.d1.2243

)(26501.205)1.205m

m≥lawandterminalvelocitycanbecalculatedbygdu1.75criticalReynoldsnumber

Ret

d

c

ut

givest

combinationofwith3d1.74cdcsolvingcriticaldiameterd

3c

d

c

)21.205)1.2051.5121512um

m3.3Itisdesiredremoveparticles50infrom226.5m

ofusingasettlingforThetemperatureare21

C1atm.Theparticledensityis3.Whatminimumdimensionsofthechamberareconsistentwith(themaximumoftheairsolution:calculateterminalvelocityfromtheequation3.2-16.Thedensityof21airρkg/m³viscosityµ=1.81×10N·2ut

d

18

2

m/s

t

soBL

Q20.86mu60t

2

LHuutthepermissibleoftheairis3m/sLH30.181

setbemthenequationLmH3.4Acycloneusedtoseparatedustofof2300kg/m³fromTheflowgas/h,ofthe·s/m²,kg/3

Ifdiameterofcycloneis400mm,totheSolution:D=0.4mBDDui

Q1000/shB0.2Accordingtothefor:d

(

99(3.6m0)i3.6Apressof

filteringareaisusedforfilteringaslurry.Thefiltrationcarriedoutconstantpressurewith500mmHg.Theoffiltratecollectedinthefirstwasoneliterafurther5min,an0.6literwasHowmuchfiltratewillbefiltrationoutfor15minassumingcakebeincompressible?mfm0.00930.0093mfm0.00930.0093.heforconstant-pressureKAt5min

l.

1

2

VK0.1

2

10min

l

2

V0.1

2

solvingequationsaboveVandK

KFor

min

V

22

forV=2.073l3.7Thefollowingareforafilterpressofm

filteringareaintestPressuredifference/kg2

filteringtime/s50×-39.10-32.27×-39.10×-3filtrationconstantKatthepressure1.05iftheofthefilterfilledwiththecake660s,whatisthefinaloffiltrationdt

Eandconstantofn?①fromq

Kt

For

p1.05

㎏/㎝2.27

2

0.0093

2

K

solvingequationsandgivesqm

mm

32

K

m

2

/0.00930.00930.00930.0093.②KAdt2(E

=

m3/For

3.5

㎏㎝2

2.270.0093

q

m

m

solvingequationsandgivesq

m

mm

32

K

m

2

/4.37

1

1

lnsolvingn3.8Aslurryiffilteredbyfilter2aconstantfiltration2t

filteringareaconstantequationforq=filtratefilteringarea,inl/m2,filteringinminfiltratewillafter249.6min?Ifpressuredifferencebothresistancesoffiltrationmediumandcakearehowmuchfiltratewillbeafter249.6min?solution:q

2

250(250(249.6

22V=24lq11222mq11222m.thedifferenceisKK

1.41250l

l3.9Filtrationoutplatefilterwith20frames0.3and50mmthick.Atapressuredifferenceof248.7kN/m

one-quarterofthetotalfiltratecycleisobtainedforfirst300s.Filtrationiscontinuedataconstantforfurther1800s,theframesfull.Thetotalfiltrate0.7

dismantlingandtakes500sItdecidedusearotaryfilter,1.5mindiameter,placeoffilterpress.thattheresistanceofthesamethatthefilterisspeedofrotationofdrumwhichwillinsameratefiltrationaswaswithfilterpress.Thefiltrationinthefilterisoutconstantof2

with25%ofthesubmergedSolution:filtration:A=2×0.32×20=3.6mΔp2tV×0.7=0.175m3tt3tV0.175

2

V

2

t3.6

2

300KV3.622100KV=0.2627m3K

0.723.62

Vm210012.96

Q

2100500

2.692

m

/fortherotarydrumfiltermmmmmm.filtration:AdL×2.2×1.52pressure:=70kN/m2thedrumsubmerged:ForrotarydrumfiltrationkeepVKchangeswithchanginginK

703.1517248.7

thecapacityofdrumfilteristooffilter

10.3622

0.2627

0.2627

fortheequationtrialand

0.0002381nVK20.0690.2627mm转/min)Afilterof0.093m2

filteringwasusedsuspensioncontainingcarbonate,operatinginpressure.Thefiltratecollected2.27×103

duringthe50volumeofcollected3.35×10

3

duringthe100s.Howwillfiltratebefilteringfor:filteringaream

;filtrate-3

3

fort=50sandV=3.35×10

3

fort=100sforpressurefiltrationKAtvariablesgivengives

2

2.27

0.093

2

2

2

2

combining12V=3.85×10-4

3

-5

2

/sSubstitutionofandKforconstant-pressureequationVVA2tsolvingvolumeofgainedfor200smm.V-3

3Aslurrywithcakeis

filterconstantpressure.IfthefilteringconstantK2

/min,operatingpressuredifference

2atmtheresistancecanbeFindthefiltratevolume,in

filtering10ifthebeandVis1m

whatfiltratevolumeV,in3

filtering10?whatfiltrationdV/dtwhenthe10forcase(1)?Solution:forconstant-pressure

2

2

tfiltersetnegligibleV2KA2VAKt

②Thefilteringmediumtakenaccount

2

2

tV2V

2

9.05m

③theequationforconstant-pressurefilteringisderivativeasmediumresistancedoesntbeaccountdV210dt22Aflatwallconstructedofalayerofbrick,withaconductivityof0.138W/(m·°C)bycommonbrick,conductivityW/(m·°C).temperatureofinnerofthewallisC,andof76.6°C.()Whatheatthroughthewall?(Whattemperatureoftheinterfacebrickcommonbrick?(c)Supposingbetweenthetwobricklayerspoorthata“contactresistance”of2/Wpresent,theloss?Solution:iioooiiooo.heatloss:

qA

i

BB2kk2

7600.1140.1381.38

688.89/m

temperatureinterface:/AB1k0.1381℃

2(c)is0.088°C·m2

/W,heatloss:qA

i

760BB0.1140.2290.088kk1.38

W/m

(dbyk=0.615C).IfthetemperatureofoutersurfaceofpipeCtemperaturethelayeris38C,whataretheheatlosstemperaturewithinlayer?:Similartoinseriesthroughtheflatwall,thetotalresistanceacrossinsulating

B0.615

0.426)/ln(1.278/0.426)LLHeatpertubewallq177589.7WLtemperatureqLR

177

r0.213

589.7/mt2277.5

routerdiameterofasteel150mm.Thetubebackedtwolayersheatofconductivityoftwoinsulatingmaterials1i1oiioop1i1oiioop/21

.bothinsulatingmaterialsthesamethicknessIfthedifferencebetweenwallandsurfaceinsulatingconstant,insulatingmaterialshouldbepackedinsideheatsolution:k(lower)thewithlowerconductivity

i

bk1

bk

A

2

L(r)3r3r2

m

L(r)21r2r1

thicknessoftwolayersareequalb=b=b,

/22

k11

12

1AAm2contrarily,materialwiththermalconductivityinside,kQbbb1112AkA2A2A1mm2m11mm1m1QA2Amm2

for

12

sowithheatobtainedasthematerialwiththermalconductivityisAiratnormalpressurethrough20andiso

C.Whatfilmheattransfercoefficienthpipewalliftheaveragevelocityofairis10m/s?propertiesat60CAir:densitykg/m,viscosityµ=0.02conductivityW/(mC),=1kJ/(kgSolution:piodipiodi.

du

0.02

0.0289

0.023

di

0.8

106000.02

0.8

0.4

0.03324Methylalcoholflowinginthepipeofadouble-pipecooledwithwaterflowinginthejacket.Theinnerfrom25-mmTheconductivityofsteelisW/(m·oandfoulingareinthefollowingTable.Whatoverallcoefficient,ontheoutsideofinnerpipe?Datafor8W/(m

hWatercoefficientInsidefoulinghfoulingfactorSolution:equation

do

U

dbd1hhkhhidiiiooappendixthewallthickness3.25mmandoutsidediameterisfornominaldiameter25mmSchedulestandardsteelpiped

2

30.25mmoiokmpoiokmp.U

2.1841.2167.9983.521

/

o

CBenzenewithmass1800kgthroughthedoublepipeexchanger.fromo

Cto

C.TheofinnerisandtheouterWhatisindividualtransfercoefficientbenzene?Solution:diameterinner=19mm,insidediameteroftubeTheequivalentdiameterofannulartube

(2)D)i

32mmioequationh0.023

k

u

80t2

thebenzene:-3Pas,,℃ρ=850kg/m

attemperatureof50℃velocityofbenzeneflowingthroughthespaceofisas

4

(2)uiu

42)36000.0322io

1.13m/Substitutingtheintoequation1givespko12ppoipko12ppoi.h

k

e

0.4=

0.0130.45

3

0.40.24427748

2

4.10.Air2atmand20Cinthepipeoftubular80ofis57×3.5mmitslengthislong.Whattransfercoefficientofside?olution:ofairatinletandoot2080t122

o

Cofair

Cμ=0.019×10Pas,densityatonideallaw,

229273)

kg/m311,air

2

0.028

W/mKApp.13heatofair=1KJ/kgKThevelocityofairflowingthroughtubeu

4603.140.05

8.49

m/s

du

0.019

48884.5

10.028

0.68h

k0.0280.0230.8Pr0.4dd0.05

W/m2

K4.12.Ahotfluidwithaflowrate2250through25x2.5mmtube.physicalofareasfollows:C),c

=4kJ/(kgNdensityHeatfilminW/(miio1/30.81/3p11iio1/30.81/3p11.If1125kg/hotherconditionswhatishIfof(inside10mm,andthethesameasofcalculatethetemperatureoffluidandquantityofheatflowtubeareW/m,temperatureofwallfora?thisinordertoheattransferfilmcoefficientenhanceheatwhatkindsofmethodscanuseandisHint:forforturbulentflowPrsolution:

u

4236000.02

2

1.99

m/s

du

1.99100010

4

kNuh0.0230.8Prd0.02

2.05503.1/m

2

K

hu

coefficienthasratedecreases1125kg/hhh

0.8

1125

0.8

0.574´=5503.1×0.574=3158.8W/m

Kkh0.023Red

0.8

13hh

0.2

0.2

1.15´2

KffLffL.qAh(t)f

dlht)fwtf

q40040dlh3.140.02

o

Cthevelocityofflowingthesaturatedat100o

Cissaturatedliquidsurfaceofasingleverticalwithanddiametertemperatureofwall92C.WhatisthevaporIfhorizontally,thequantityofvaporperhour?Solution:From6,ofsaturatedat100

oTheaveragetemperatureof℃Thepropertiesofwaterat96

oareasfollows:

Pas(fromappendix=958kg/m

;fromequation

3hof

2

/(

C)m

hA()

3

kg/20.8kg/the

md

0.038

)440.282

flow)Ifisplacedfrom(4.5-14)h

0.729

ffdof

0.773poooioo0.773poooioo.h0.729h

Ld

2.50.7730.0382mhm4.14.Inadoublepipecold(ckJ/(kgflowkg/h)throughthepipehotfluidthroughtheTheinletoffluidareand80C,inletandoutlettemperaturesoffluidare150and90ChinsideaW/(mo

heattransfercoefficientU(basedsurfaceofpipe)300W/(mo

C),Ifheatisandthewall(steel)takenas45W/(mfind:heatpipe?thepipelengthforinispipeifheatingchangestosaturatedC)whichsaturatedliquidconditionstheusedforitisthatitmeetproduction(thetemperatureofcoldfluidcannot80C),explainSolution:(1)FromequationUo

1bd1oodhhiimoo

o1222m112212o1222m112212.0.0017294.868

o

℃writeenergybalanceequation(t)UAUp21

dLo

forcountercurrentflowToto

C

T=90o

∆t1so∆t

=150-80=70C;∆to=70oCtoofdoubleL

(t)21U

50070

T

C

∆to;∆tCt

C

tC

sot22L

mc(t)Uo

mct)1mtU36003000.023U12oolndepositingonthesurfacesofthegiveadditionalthermaloooiiiiioiooooooiiiiioiooo.15.WaterturbulentlyinthethevelocityofwaterVistransfercoefficientU(basedoutersurfacepipe)W/(m2

C).Ifthe1.5m/sUis2660W/(m

CWhatisfilmhoutside(Heatofpipewallandscaleignored)Solution:equation(4.3-37),neglectingthermalresistanceoftubewallU

111thevelocityofis1m/s,coefficientoftowalloftubesiscoefficientUo

2115

oftheindividualwaterwallofh,tohby

0.8

1.5

0.8

coefficientisUo

i

hi

solving1and2forhandh=2858W/(m

);hm2

4.17.Waterpassparallellythroughexchangerwhich1mlong.inletandoutletofwater15CandC,andthoseareand100Iftheofdecreasestotheflowandphysicalp222oop222oo.inlettemperatureswaterwhatlengthofexchanger?(Heatwallare:energyforforwater

q100)1qc15)2

qc(150100)c80)UA1p2differentoperatinginparallel℃15010060℃13560℃135ln60

foroil

c(1501p1

()forwater

qmct22

(5qcc(t111p

2

qmcmctqm100)cUAp2solvingfort℃temperaturedifference℃5030℃135℃135ln30equation

mm

q150Lq150100

solving

L

=1.86L4.18.Airwhichpipeinturbulentflowisheatedfrom20Cto80C.ThesaturatedatCsaturatedthepipe.Ifrateoforiginandinlettemperaturesofairwhatkindof.employintodothat?(Heatresistancewallscalebe:temperatureofair:

t

202

=50Ctheairat℃

1.093

kg/m3

c1.017p

kJ/kg.k

k

thevaporpressureofsteamtomeettheforrisingintherateofair20%,temperatureofdenotedbyTq(8020)p

(1q

20)p

(2mm∵coefficientwithchangeisverycomparedwithcoefficientofair,theofsideinwithresistanceandUh1.2Uh

0.8

1.157

ln

80

61.5

temperatureof

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论