《信号与系统》期末测验试题及答案(13P)_第1页
《信号与系统》期末测验试题及答案(13P)_第2页
《信号与系统》期末测验试题及答案(13P)_第3页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《信号与系统》期末测验试题及答案(13P)《信号与系统》测验一、单项选择题................................................2二、简答题....................................................5三、计算题...................................................10一、单项选择题设系统的初始状态为f,以下系统为线性系统的是0D 。

x2t0

lgf

xt0

2t 0

tt0

f(D) et0

dfdt

tt0

fd一个矩形脉冲信号,当脉冲幅度提高一倍,脉冲宽度扩大一倍,则其频带宽度较原来频带宽度 A 。(A)缩小一倍(B)扩大一倍 (C)不变 (D)不能确定某系统的系统函数为H(z)

z,若该系统是因果系统,则其收敛区为(z0.5)(z2)B 。(A)|z|<0.5 (B)|z|>2 (C)0.5<|z|<2 (D)以上答案都不对下面关于离散信号的描述正确的是 B 。有限个点上有非零值,其他点为零值的信号。仅在离散时刻上有定义的信号。在时间t为整数的点上有非零值的信号。信号的取值为规定的若干离散值的信号。下列信号中为周期信号的是 D 。f(t)sinsinf1

(t)cos2tcost f(k)1k(k)f(k)sin ksin 3 6 2

4 2和 f(t) f(t) (t),f(t) f(k和 1 2 1 2 3和 Bf(t) f(k) Df(t) f(k和 2 3 1 3连续周期信号的频谱具有 D 。连续性、周期性 (B)连续性、收敛性(C)离散性、周期性 (D)离散性、收敛性x1

x2

0,输入为f,完全响应为y,下列系统为线性系统的是 A 。x1

02x2

3fx1

0x2

0

fdx1

sinff2x1

02x2

0fkfk2下列描述正确的是 A 。fFj也反折。f22f2,则其相应的频谱在2。Df为时限信号,则其相应的频谱也是频带有限的。一个含有3个电容、2个电感和3个电阻的系统,以下叙述正确的是 D 。(A)一定是3阶系统 (B)一定是5阶系统(C)至多是3阶系统 (D)至多是5阶系统10.f(t)的频宽是200Hz,那么f(-2t-6)的奈奎斯特频率为 C 。(A)400Hz(B)200Hz(C)800Hz(D)100Hz若f的频谱为Fj,则下列性质正确的是 B 。

Fjt

f

dnfdtn

j

n

jCt

fxdxFj Djt

f

dnFj j dnd2r(t)

(t1)dr(t)

de(t)

e(t)描述的系统是: A 。dt2 dt dt(A)(B)线性时不变系统;()()非线性时不变系统8f(t中,下列对其含有的谐波分量的描述中最准确的是D。A只有直流、正弦项B只有直流、余弦项C只有奇次余弦项D只有偶次正弦项f(t)3… 1 …3-1-3 1 5 t信号t的奈奎斯特速率为 C 。A 1/50Hz B 1/(100)HzC 1/100HzD 1/200Hz若信号f不满足绝对可积条件,则其傅里叶变换 C 。(A)一定存在(B)一定不存在(C)可能存在,也可能不存在二、简答题f(t的波形如图所示,试画出下列各信号的波形。f(t)2

(2)t0 1 2 3 4(1)f(t)f(2t4); (2) f(t)f(1

1);1 2 2 4f(t) f(t)2 1 4

(4)1 (1) 2t t0 1 2 3 4 0 4.5 8.5解:求下图信号的傅里叶变换f(t)21-1 0 1 tFf'(teSa()F[f(t)]eSa()()jf1'(t)1-1 0 1 t0.53、求序列f1

(k)}(k,)和f2

(k),}(k,)的卷积和解: f1(k)={1,-2,3}, f2(k)={2,1,3}1,-2,32,1,32,-4,61,-2,33,-6,92,-3,7,-3,9f(k){2,3,7,3,9}k0答:无失真传输要求系统传输函数1)幅度与频率无关的常数K,系统的通频带为无限宽;2)相位特性与|ω|成正比,是一条过原点的负斜率直线。H(j)K即t0 Fs1e s22

Ff解: ftte2ttt2e2t2t2已知某序列的z变换:F(z) z(z0.5)(z0.2)解:F(z)10( z z ) (+2分)

0.2|z|0.5,求原序列f(k)3 z0.5 z0.2极点0.5处于收敛区间外部,对应于左边序列:fa

(k)

10[0.5k(k1)](+2分)310极点0.2处于收敛区间外部,对应于右边序列:fb所以:

(k)

[0.2k(k)] (+2分)3f(k)

10[0.5k(k0.2k(k)] (+2分)3f1

(t)f2

(tf(tf1

(t)f2

(t)的的波形图f1

(t)21 10 t 0 1 t解: f(t)1t0 1f(tf(-2t+1)的图形f(t)21-1 0 1 t求下述象函数F的原函数的初值f和终值f Fs2s s12f

=2,f求如图所示锯齿脉冲的傅立叶变换。fT A20 T t2答案: j2AcosSa

2 已知差分方程为y(k)y(k2y(k2)f(k),求单位序列响 应h(k)解:(1)求初始植单位根据序列响应的定义,它应该满足方程h(kh(k2h(k2)(k) )h(2)0。将上式移项有h(k)h(k2h(k2)(k)令k,并考虑到(0))0h(k)的初始值h(0)2h(2)(0)h(0)1 ②(2)求h(k)对于k0,由式①h(k)满足齐次方程h(k)h(k2h(k2)022(2)0特征根1

1,2

2,得方程的齐次解F(z)

z2(z2)2

|z2F(zf(k。解: F(z)

|z

f(k)

F(z)z进行部分分式展开,得F(z) z K12

K11z (z2)2 (z2)2

z2求系数K ,K 得:12 11K (z2)212

F(z)z

z

2 K11

(z2)2

F(z)z

1z2于是得:F(z)z

2(z2)2

1z2F(z) 2z

|z|>2(z2)2 z2因此得 k2k(k)

z(z2)2

|z|>22k(k)

zz

|z|>2所以 f(k)k2k(k)2k(k)(k1)2k(k)三、计算题1y(t2y(tf(tf(tet(t(用傅氏变换求解)y(t2y(t)f(t)jwYjwjw)Fjw)H(jw)=Y(jw) 1f(t)et(t)F(jw)(w

F(jw) jw21j(wY(jw)F(jw)H(jw) 1 (w 1f jw2 j(w2、已知某离散系统的差分方程为2y(k2)3y(k1)y(k)e(k1)其初始状态为y(0)1.5,激励e(k)(k);画出该系统的模拟框图。h(k)。

求系统的全响应y(k),并标出受迫响应分量、自然响应分量、瞬态响应分量和稳态响应分量。解:(1)y(k2)1.5y(k1)0.5y(k)0.5e(k1)x(k)

D1.5

0.5D-0.5

y(k)

(+4分)(2)H(z)

z ,H(z)

0.5z2z23z1 z21.5z0.5特征根为1=0.5,2=1H(z) z z (+2分)z1 z0.5h(k)=10.5k)(k) (+2分)(3)求零状态响应:Yzs

=H(z)E(z)=

z

z z z2z23z1 z1 z0.5 z1 (z1)2零状态响应:yzs(k)=(0.5k+k1)(k)

(+2分)y(0)0,yzs

(1)0.5y(0)y(0)yzi

(0)0y(1)y(1)yzi

(1)1 (+2分)根据特征根,可以得到零输入响应的形式解:yzi(k)=(C10.5k+C2)(k);代入初始条件得C1=2,C2=2零输入响应:yzi(k)=(220.5k)(k) (+2分)全响应:y(t)yzi

(k)yzs

(k(1k0.5k)(k(+2分)自由响应:(10.5k)(k)受迫响应:k(k),严格地说是混合响应。 (+2分瞬态响应分量0.5k(k) 稳态响应分量(1+k)(k)(对于(k,可以划归于自由响应,也可以划归于受迫响应。k(k可以归于稳态响应,或者明确指定为不稳定的分量但是不可以指定为暂态分量)3、某LTI系统的初始状态一定。已知当输入 f(t)

(t)(t)时,系统的全响应1y(t)3etu(t)f(t)f(t)u(t)时,系统的全响应y(t)et)u(t)1 2 2f(ttu(t)(用S域分析方法求解)由Y(s)Yx

(s)Yf

(S)Yx

(s)H(s)F(s)由于初始状态一定,故零输入响应象函数不变 3Y(s)Yx(s)H(s)1 s1(s)Yx(s)H(s)

1 12

sH(s) 1

s s1求解得:Yx(s)

s2s1当输入f(t)tu(t)时,全响应Y(s)Y3

(s)H(s)1s2

2s

1 1s1 s2 2

11

3 11s

s1 s s

s1 s s2y(t)(3et3

1t)(t)4、已知信号ft)的频谱F(j)如图(,周期信号

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论