版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.2.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.3.己知函数的图象与直线恰有四个公共点,其中,则()A. B.0 C.1 D.4.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. B. C. D.5.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A. B.C. D.6.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.7.已知各项都为正的等差数列中,,若,,成等比数列,则()A. B. C. D.8.已知集合,集合,则等于()A. B.C. D.9.设为锐角,若,则的值为()A. B. C. D.10.下列函数中,值域为R且为奇函数的是()A. B. C. D.11.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.12.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为____分钟.14.若在上单调递减,则的取值范围是_______15.设为数列的前项和,若,则____16.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.18.(12分)设函数.(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围.19.(12分)在平面直角坐标系中,直线与抛物线:交于,两点,且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.20.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项.(1)求;(2)设数列满足,,求数列的通项公式.21.(12分)已知函数.(Ⅰ)求函数的极值;(Ⅱ)若,且,求证:.22.(10分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,,,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】
过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【题目详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【答案点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.2.A【答案解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【题目详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【答案点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.3.A【答案解析】
先将函数解析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.【题目详解】函数即直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,,因为,故,所以.故选:A.【答案点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.4.B【答案解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.【题目详解】由题意原几何体是正三棱柱,.故选:B.【答案点睛】本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.5.D【答案解析】
首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【题目详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,显然,又易得,所以,,故.故选:D.【答案点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.6.A【答案解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【题目详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【答案点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.7.A【答案解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.8.B【答案解析】
求出中不等式的解集确定出集合,之后求得.【题目详解】由,所以,故选:B.【答案点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.9.D【答案解析】
用诱导公式和二倍角公式计算.【题目详解】.故选:D.【答案点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.10.C【答案解析】
依次判断函数的值域和奇偶性得到答案.【题目详解】A.,值域为,非奇非偶函数,排除;B.,值域为,奇函数,排除;C.,值域为,奇函数,满足;D.,值域为,非奇非偶函数,排除;故选:.【答案点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.11.D【答案解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【题目详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【答案点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.12.B【答案解析】
由题意知,,由,知,由此能求出.【题目详解】由题意知,,,解得,,.故选:B.【答案点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。13.7.5【答案解析】
分别求出所有人用时总和再除以总人数即可得到平均数.【题目详解】故答案为:7.5【答案点睛】此题考查求平均数,关键在于准确计算出所有数据之和,易错点在于概念辨析不清导致计算出错.14.【答案解析】
由题意可得导数在恒成立,解出即可.【题目详解】解:由题意,,当时,显然,符合题意;当时,在恒成立,∴,∴,故答案为:.【答案点睛】本题主要考查利用导数研究函数的单调性,属于中档题.15.【答案解析】
当时,由,解得,当时,,两式相减可得,即,可得数列是等比数列再求通项公式.【题目详解】当时,,即,当时,,两式相减可得,即,即,故数列是以为首项,为公比的等比数列,所以.故答案为:【答案点睛】本题考查数列的前项和与通项公式的关系,还考查运算求解能力以及化归与转化思想,属于基础题.16.【答案解析】
因为,由二倍角公式得到,故得到.故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)3+3【答案解析】
(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周长.【题目详解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周长a+b+c=3+3.【答案点睛】本题考查三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.18.(1)(2)【答案解析】
利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【题目详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为若对任意、都有,即为,由,当取得等号,则,由,可得,则的取值范围是【答案点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题.(1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不等式恒成立问题转化为函数最值问题.19.(1)1;(2)见解析【答案解析】
(1)设,,联立直线和抛物线方程,得,写出韦达定理,根据弦长公式,即可求出;(2)由,得,根据导数的几何意义,求出抛物线在点点处切线方程,进而求出,即可证出轴.【题目详解】解:(1)设,,将直线代入中整理得:,∴,,∴,解得:.(2)同(1)假设,,由,得,从而抛物线在点点处的切线方程为,即,令,得,由(1)知,从而,这表明轴.【答案点睛】本题考查直线与抛物线的位置关系,涉及联立方程组、韦达定理、弦长公式以及利用导数求切线方程,考查转化思想和计算能力.20.(1);(2).【答案解析】
(1)根据题意,建立首项和公差的方程组,通过基本量即可写出前项和;(2)由(1)中所求,结合累加法求得.【题目详解】(1)由题意可得即又因为,所以,所以.(2)由条件及(1)可得.由已知得,所以.又满足上式,所以【答案点睛】本题考查等差数列通项公式和前项和的基本量的求解,涉及利用累加法求通项公式,属综合基础题.21.(Ⅰ)极大值为:,无极小值;(Ⅱ)见解析.【答案解析】
(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数的极值;(Ⅱ)得到,根据函数的单调性问题转化为证明,即证,令,根据函数的单调性证明即可.【题目详解】(Ⅰ)的定义域为且令,得;令,得在上单调递增,在上单调递减函数的极大值为,无极小值(Ⅱ),,即由(Ⅰ)知在上单调递增,在上单调递减且,则要证,即证,即证,即证即证由于,即,即证令则恒成立在递增在恒成立【答案点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,考查运算求解能力及化归与转化思想,关键是能够构造出合适的函数,将问题转化为函数最值的求解问题,属于难题.22.(1);(2)【答案解析】
(1)当时,利用可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西电力职业技术学院《社会保障史》2023-2024学年第一学期期末试卷
- 吉林体育学院《解剖和生理(生理)》2023-2024学年第一学期期末试卷
- 湖南食品药品职业学院《高等数理统计一》2023-2024学年第一学期期末试卷
- 湖南大众传媒职业技术学院《国际物流与供应链管理》2023-2024学年第一学期期末试卷
- 【物理】《压强》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理总复习《力与物体的平衡》专项测试卷含答案
- 年产5万台模块化操动机构及高压断路器生产线项目可行性研究报告写作模板-备案审批
- 郑州软件职业技术学院《钢结构设计B》2023-2024学年第一学期期末试卷
- 浙江电力职业技术学院《光电技术基础》2023-2024学年第一学期期末试卷
- 长安大学《个体防护》2023-2024学年第一学期期末试卷
- 污水土地处理系统中双酚A和雌激素的去除及微生物研究
- HG-T+21527-2014回转拱盖快开人孔
- JTS-167-2-2009重力式码头设计与施工规范
- DBJ-T15-81-2022 建筑混凝土结构耐火设计技术规程
- GB/T 22849-2024针织T恤衫
- 山东省淄博市2023-2024学年高二上学期教学质量检测化学试题
- 人工智能在电影与影视制作中的创新与效果提升
- 新生儿肠绞痛的课件
- 酒店民宿自媒体营销策划
- 消除母婴传播培训课件
- 通用电子嘉宾礼薄
评论
0/150
提交评论