版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合,则等于()A. B.C. D.2.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:①②③④点为函数的一个对称中心其中所有正确结论的编号是()A.①②③ B.①③④ C.①②④ D.②③④3.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.4.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.5.如果实数满足条件,那么的最大值为()A. B. C. D.6.已知函数是定义在上的偶函数,且在上单调递增,则()A. B.C. D.7.已知集合,,则A. B.C. D.8.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.9.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B. C. D.10.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.11.曲线在点处的切线方程为()A. B. C. D.12.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是.14.已知平面向量,,且,则向量与的夹角的大小为________.15.已知数列的前项满足,则______.16.如图,已知圆内接四边形ABCD,其中,,,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.(Ⅰ)判断点与直线的位置关系并说明理由;(Ⅱ)设直线与曲线的两个交点分别为,,求的值.18.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.19.(12分)已知等比数列,其公比,且满足,和的等差中项是1.(Ⅰ)求数列的通项公式;(Ⅱ)若,是数列的前项和,求使成立的正整数的值.20.(12分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.21.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.22.(10分)已知抛物线E:y2=2px(p>0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.线段AB的垂直平分线与x轴交于点C.(1)求抛物线E的方程;(2)求△ABC面积的最大值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
求出中不等式的解集确定出集合,之后求得.【题目详解】由,所以,故选:B.【答案点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.2.B【答案解析】
首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【题目详解】解:由题意可得,又∵和的图象都关于对称,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正确,②错误.故选:B【答案点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.3.A【答案解析】
根据向量平行的坐标表示即可求解.【题目详解】,,,,即,故选:A【答案点睛】本题主要考查了向量平行的坐标运算,属于容易题.4.A【答案解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【题目详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【答案点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.5.B【答案解析】
解:当直线过点时,最大,故选B6.C【答案解析】
根据题意,由函数的奇偶性可得,,又由,结合函数的单调性分析可得答案.【题目详解】根据题意,函数是定义在上的偶函数,则,,有,又由在上单调递增,则有,故选C.【答案点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.7.D【答案解析】
因为,,所以,,故选D.8.C【答案解析】
令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【题目详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【答案点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.9.B【答案解析】
根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【题目详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【答案点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.10.A【答案解析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【题目详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【答案点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.11.A【答案解析】
将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【题目详解】曲线,即,当时,代入可得,所以切点坐标为,求得导函数可得,由导数几何意义可知,由点斜式可得切线方程为,即,故选:A.【答案点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.12.A【答案解析】
由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.【题目详解】由题意,2c=8,则c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴双曲线C的方程为.故选:A.【答案点睛】本题考查双曲线的简单性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:.考点:1、三角函数定义;2、诱导公式.14.【答案解析】
由,解得,进而求出,即可得出结果.【题目详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为.都答案为:.【答案点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题.15.【答案解析】
由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【题目详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.【答案点睛】本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.16.【答案解析】
由题意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【题目详解】由圆内接四边形的性质可得,.连接BD,在中,有.在中,.所以,则,所以.连接AC,同理可得,所以.所以.故答案为:【答案点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)点在直线上;见解析(Ⅱ)【答案解析】
(Ⅰ)直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;(Ⅱ)根据直线的参数方程中参数的几何意义可得.【题目详解】(Ⅰ)直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;(Ⅱ)直线的参数方程为(为参数),曲线的普通方程为,将直线的参数方程代入曲线的普通方程得,设两根为,,所以,,故与异号,所以,,所以.【答案点睛】本题考查在极坐标参数方程中方程互化,还考查了直线的参数方程中参数的几何意义,属于中档题.18.(Ⅰ);(Ⅱ)面积的最小值为9,.【答案解析】
(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;(Ⅱ)设直线方程为,设,把直线方程代入抛物线方程,化为的一元二次方程,由韦达定理得,由弦长公式得,同理求得点的横坐标,于是可得,将面积表示为参数的函数,利用导数可求得最大值.【题目详解】(Ⅰ)∵椭圆:,长轴的右端点与抛物线:的焦点重合,∴,又∵椭圆的离心率是,∴,,∴椭圆的标准方程为.(Ⅱ)过点的直线的方程设为,设,,联立得,∴,,∴.过且与直线垂直的直线设为,联立得,∴,故,∴,面积.令,则,,令,则,即时,面积最小,即当时,面积的最小值为9,此时直线的方程为.【答案点睛】本题考查椭圆方程的求解,抛物线中弦长的求解,涉及三角形面积范围问题,利用导数求函数的最值问题,属综合困难题.19.(Ⅰ).(Ⅱ).【答案解析】
(Ⅰ)由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(Ⅱ),由数列的错位相减法求和可得,解方程可得所求值.【题目详解】(Ⅰ)等比数列,其公比,且满足,和的等差中项是即有,解得:(Ⅱ)由(Ⅰ)知:则相减可得:化简可得:,即为解得:【答案点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题.20.(1)a=-1,b=1;(2)-1.【答案解析】(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,,,,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知.(2)由(1)知:,∴对任意恒成立对任意恒成立对任意恒成立.令,则.由于,所以在上单调递增.又,,,,所以存在唯一的,使得,且当时,,时,.即在单调递减,在上单调递增.所以.又,即,∴.∴.∵,∴.又因为对任意恒成立,又,∴.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.21.(1);(2).【答案解析】
(1)对范围分类整理得:,分类解不等式即可.(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解.【题目详解】当时,,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,∴,故满足条件的的取值范围是【答案点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题.22.(1)y2=6x(2).【答案解析】
(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.【题目详解】(1)抛物线E:y2=2px(p>0),焦点F(,0)到准线x的距离为3,可得p=3,即有抛物线方程为y2=6x;(2)设线段AB的中点为M(x0,y0),则,y0,kAB,则线段AB的垂直平分线方程为y﹣y0(x﹣2),①可得x=5,y=0是①的一个解,所以AB的垂直平分线与x轴的交点C为定点,且点C(5,0),由①可得直线AB的方程为y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年定制化抵押车辆融资合同样本3篇
- 2025版酒店客房租赁及买卖合同3篇
- 2025年度大型数据中心网络安全保障服务合同
- 2024年度大学生实习期间人身安全保障合同3篇
- 2025年工业定制电源合作协议书
- 旅游网站课程设计
- 2024年玛雅社区房屋租赁与社区设施租赁合同3篇
- 2024年版标准格式协议模板细则版B版
- 承德医学院《邮轮服务与管理》2023-2024学年第一学期期末试卷
- 成都职业技术学院《展示与陈设》2023-2024学年第一学期期末试卷
- 博士能数码望远镜118326使用说明书
- cad自定义线型、形定义线型、cad斜坡线学习
- 任上线立塔架线施工专项方案
- 139.华师《管理沟通》期末考试复习资料精简版
- 胆囊结石合并急性胆囊炎临床路径表单
- 电力建设安全工作规程解析(线路部分)课件
- 小学英语不规则动词表
- VIC模型PPT课件
- AQL2.5抽检标准
- 宣传广告彩页制作合同
- 征信知识测试题及答案
评论
0/150
提交评论