甘肃省嘉峪关市2021-2022学年中考数学模拟精编试卷含解析及点睛_第1页
甘肃省嘉峪关市2021-2022学年中考数学模拟精编试卷含解析及点睛_第2页
甘肃省嘉峪关市2021-2022学年中考数学模拟精编试卷含解析及点睛_第3页
甘肃省嘉峪关市2021-2022学年中考数学模拟精编试卷含解析及点睛_第4页
甘肃省嘉峪关市2021-2022学年中考数学模拟精编试卷含解析及点睛_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知,两数在数轴上对应的点如图所示,下列结论正确的是()A. B. C. D.2.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角3.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.64.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走

x

步才能追上走路慢的人,那么,下面所列方程正确的是A. B. C. D.6.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm7.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.168.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元9.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有()A.1个 B.2个 C.3个 D.4个10.已知,则的值为A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.已知抛物线y=ax2+bx+c=0(a≠0)与轴交于,两点,若点的坐标为,线段的长为8,则抛物线的对称轴为直线________________.12.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.13.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).14.已知图中的两个三角形全等,则∠1等于____________.15.对于函数y=,当函数y﹤-3时,自变量x的取值范围是____________.16.化简:_____________.17.高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号通过小客车数量(辆)260330300360240在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.三、解答题(共7小题,满分69分)18.(10分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.(1)求证:BC平分∠DBA;(2)若,求的值.19.(5分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.求证:△ECG≌△GHD;20.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.21.(10分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.22.(10分)解方程式:-3=23.(12分)计算:.24.(14分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A.

∵b<a<0,∴a+b<0,故本选项错误;B.

∵b<a<0,∴ab>0,故本选项错误;C.

∵b<a<0,∴a>b,故本选项正确;D.

∵b<a<0,∴b−a<0,故本选项错误.故选C.2、C【解析】熟记反证法的步骤,然后进行判断即可.

解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;

A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;

B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;

C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;

D、由于无法说明两角具体的大小关系,故D错误.

故选C.3、C【解析】

先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.4、C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.5、B【解析】解:设走路快的人要走x步才能追上走路慢的人,根据题意得:.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.6、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.7、A【解析】

∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.8、C【解析】

利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1.所以该商品的原价为1元;故选:C.【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.9、C【解析】

首先根据抛物线的开口方向可得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x1<﹣1、0<x2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【详解】由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0;①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;③抛物线对称轴位于y轴的左侧,则a、b同号,又c>0,故abc>0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;因此正确的结论是①②④.故选:C.【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.10、C【解析】由题意得,4−x⩾0,x−4⩾0,解得x=4,则y=3,则=,故选:C.二、填空题(共7小题,每小题3分,满分21分)11、或x=-1【解析】

由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴.【详解】∵点A的坐标为(-2,0),线段AB的长为8,∴点B的坐标为(1,0)或(-10,0).∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,∴抛物线的对称轴为直线x==2或x==-1.故答案为x=2或x=-1.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.12、同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定13、①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴与垂直;②∵∴与不垂直.③∵∴与垂直.④∵∴与垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.14、58°【解析】如图,∠2=180°−50°−72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为58°.15、-<x<0【解析】

根据反比例函数的性质:y随x的增大而减小去解答.【详解】解:函数y=中,y随x的增大而减小,当函数y﹤-3时又函数y=中,故答案为:-<x<0.【点睛】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.16、【解析】

根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.17、B【解析】

利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与CD进行对比,可知B疏散乘客比D快;同理同时开放BC与AB进行对比,可知C疏散乘客比A快;同理同时开放DE与CD进行对比,可知E疏散乘客比C快;同理同时开放AB与AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)【解析】分析:(1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.详解:(1)证明:连结OC,∵DE与⊙O相切于点C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,.∴,∴,∵,设EA=2k,AO=3k,∴OC=OA=OB=3k.∴.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.19、见解析【解析】

依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.【详解】证明:∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∵F是AD的中点,FG∥AE,∴H是ED的中点∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD.(AAS).【点睛】本题考查了全等三角形的判定,线段垂直平分线的判定与性质,熟练掌握全等三角形的判定定理是解决问题的关键.20、-【解析】

先化简,再解不等式组确定x的值,最后代入求值即可.【详解】(﹣)÷,=÷=解不等式组,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1时,分式无意义,∴x=2,∴原式==﹣.21、证明见解析.【解析】

(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论