版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
RandomFiniteSetsinStochasticFilteringBa-NguVo
EEEDepartment
UniversityofMelbourne
Australia.au/staff/bv/IEEEVictorianChapterJuly28,2009RandomFiniteSetsinStochastStochasticFilteringHistoryN.Wiener(1894-1964)
A.N.Kolmogorov(1903-1987)R.E.Kalman(1930-)1940’s:Wienerfilter PioneeringworkbyWiener,Kolmogorov1950’s:Kalmanfilter WorkbyBode&Shannon,Zadeh&Ragazzini,Levinson,Swerling,Stratonovich,etc.1970’s:Aerospaceapplications Sorenson&Alspach,Singer,Bar-Shalom,Reid,etc.1960’s:
PublicationoftheKalmanfilter,Kalman-Bucyfilter,Schmidt’s1stimplementation–ApolloprogramLMSalgorithmbyWidrow&Hoff2StochasticFilteringHistoParticleFilter(1990’s--) Computationaltoolsfornon-linearnon-Gaussianfiltering Gordon,Salmond&Smith,Doucet…RandomFiniteSet(1990’s--)
Unifiedframeworkformulti-objectfiltering&control ProbabilityHypothesisDensity(PHD)filters,Bernoullifilter PioneeringworkbyMahlerStochasticFiltering:ThePresent3ParticleFilter(1990’s--)RandTheBayes(nonlinear)FilterPracticalChallengesMulti-ObjectFilteringRandomFiniteSetPHD/CPHDFilters&ApplicationsConclusionsOutline4TheBayes(nonlinear)FilterTheBayes(nonlinear)Filterstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zk
fk|k-1(xk|xk-1)MarkovTransitionDensityMeasurementLikelihoodgk(zk|xk)Objectivemeasurementhistory
(z1,…,zk)posteriorpdfofthestatepk(xk|z1:k)SystemModel5TheBayes(nonlinear)Filtstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkBayesfilterpk-1(xk-1
|z1:k-1)pk|k-1(xk|z1:k-1)pk(xk|z1:k)predictiondata-update
pk-1(xk-1|z1:k-1)
dxk-1
fk|k-1(xk|xk-1)gk(zk|xk)
pk|k-1(xk|z1:k-1)TheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)
gk(zk|xk)pk-1(xk-1|z1:k-1)dxk6state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkTheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)pk-1(.
|z1:k-1)pk|k-1(.
|z1:k-1)pk(.
|z1:k)predictiondata-updateBayesfilterN(.;mk-1,Pk-1)N(.;mk|k-1,Pk|k-1)N(.;mk,Pk)Kalmanfilteri=1N{wk|k-1,xk|k-1}i=1N(i)(i){wk,xk}
i=1
N(i)(i){wk-1,xk-1}(i)(i)Particlefilter7state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallenges
fk|k-1(xk|xk-1)gk(zk|xk)Sofar,weassumedexactly1observationateachtime
HoldsonlyforasmallnumberofapplicationsPracticalmeasuringdevice:mayfailtodetecttrueobservation(detectionuncertainty)&picksupfalseobservations(clutter)8state-vectorstatedynamicstatePracticalChallengesNotdetectedDetectionuncertainty:DetectedFalseobservations(clutter)orNumberoffalseobservationsunknownrandomFalse9PracticalChallengesNotdPracticalChallengesNoinformationonwhichistheobservationofthestateNumberofobservationsisarandomvariable.‘+’Observation=NotdetectedDetectedFalse10PracticalChallengesNoinstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallengesSummaryofpracticalchallenges:Numberofobservationsisrandom&timevaryingTrueobservationmaynotbepresentDonotknowwhichobservationsarefalse/trueOrderingofobservationsnotrelevant11state-vectorstatedynamicstateobservation
producedbyobjectsstatedynamicstatespaceobservationspace5objects3objectsXk-1XkObjective:Jointlyestimatethenumber&statesofobjectsNumerousapplications:defence,surveillance,robotics,biomed,…Challenges:RandomnumberofobjectsandmeasurementsDetectionuncertainty,clutter,associationuncertaintyMulti-ObjectFiltering12observationproducedbyobjeEstimateiscorrectbutestimationerror???TrueMulti-objectstateEstimatedMulti-objectstateHowcanwemathematicallyrepresentthemulti-objectstate?2objectsUsualpractice:stackindividualstatesintoalargevector!2objectsRemedy:useFundamentalinconsistency:Multi-ObjectFiltering13EstimateiscorrectbutestimaTrueMulti-objectstateEstimatedMulti-objectState2objectsnoobjectTrueMulti-objectstateEstimatedMulti-objectState2objects1objectWhataretheestimationerrors?
Multi-ObjectFiltering14TrueEstimated2objectsnoobjecMiss-distance:errorbetweenestimateandtruestatemeasureshowcloseanestimateistothetruevaluewell-understoodforsingletarget:Euclideandistance,MSE,etcfundamentalinestimation/filtering&controlVectorrepresentationdoesn’tadmitmulti-objectmiss-distanceFinitesetrepresentationadmitsmulti-objectmiss-distance,e.g.Haussdorf,Wasserstein,OSPA[Schuhmacheret.al.08]Infactthe“distance” isadistanceforsetsnotvectorsMulti-ObjectFiltering15Miss-distance:errorbetweeneMulti-ObjectFilteringstatesmulti-objectstatemulti-objectobservationXobservationsXZ
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateReconceptualiseasafiniteset-valuedfilteringproblemMulti-objectstate&observationrepresentedbyfinitesetsBayesianframeworktreatsstate/observationasrandomvariablesBayesianmulti-objectfiltering
requiresrandomfiniteset(RFS)16Multi-ObjectFilteringstatRandomFiniteSetThenumberofpointsisrandom,ThepointshavenoorderingandarerandomAnRFSisafiniteset-valuedrandomvariableAlsoknownas:pointprocessorrandompointpatternWhatisarandomfiniteset(RFS)?Example1:BernoulliRFSsample
u~uniform[0,1]if
u<r,
sample
x~p(.),end;
EExample2:multi-BernoulliRFS=
UnionofBernoulliRFSs17RandomFiniteSetThenumbeRandomFiniteSetESamplen
~Poiss(r),
fori=1:n,
sample
xi~p(.),end;
Example3:PoissonRFSESamplen
~c(.),
fori=1:n,
sample
xi~p(.),end;
Example4:i.i.d.clusterRFS18RandomFiniteSetESamplenRandomFiniteSetNeedsuitablenotionsofdensity/integrationforfiniteset
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-update??statesmulti-objectstatemulti-objectobservationXobservationsXZMulti-objectBayesfilter19RandomFiniteSetNeedsuitRandomFiniteSetBelief“density”
ofS
fS:F(E)
®[0,¥)
bS
(T)
=
òT
fS
(X)dXBelief“distribution”
ofSbS
(T)=P(SÍT),TÍ
EESProbabilitydensity
ofS
pS:F(E)
®[0,¥)
PS
(T
)
=
òT
pS
(X)m(dX)Probabilitydistribution
ofSPS
(T
)=P(SÎT),
T
Í
F(E)F(E)SCollectionoffinitesubsetsof
E
Statespace
Mahler’sFiniteSetStatistics(1994)Choquet(1968)TTConventionalintegralSetintegralPointProcessTheory(1950-1960’s)VSD(2005)20RandomFiniteSetBelief“d
Computationallyexpensive!single-objectBayesfilter
multi-objectBayesfilter
stateofsystem:
randomvectorfirst-momentfilter(e.g.
a-b-g
filter)stateofsystem:
randomsetfirst-momentfilter(“PHD”filter)
Single-object
Multi-objectThePHDFilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateMulti-objectBayesfilter21Computationallyexpensive!sinThePHDFilterx0statespacevPHD(intensityfunction)ofanRFSS
v(x)dx
=expectednumberofobjectsin
SSv(x0)
=densityofexpectednumberofobjectsat
x022ThePHDFilterx0statespacThePHDFilterstatespace
vk
vk-1
PHDfilter[Mahler03]vk-1(xk-1|Z1:k-1)vk(xk|Z1:k)
vk|k-1(xk|Z1:k-1)PHDpredictionPHDupdateMulti-objectBayesfilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictionupdateAvoidsdataassociation!23ThePHDFilterstatespaceThePHDFilter:Predictionvk|k-1(xk
|Z1:k-1)=fk|k-1(xk,xk-1)
vk-1(xk-1|Z1:k-1)dxk-1+gk(xk)
intensityfromprevioustime-step
termforspontaneousobjectbirthsfk|k-1(xk,xk-1)=ek|k-1(xk-1)fk|k-1(xk|xk-1)+bk|k-1(xk|xk-1)MarkovtransitionintensityprobabilityofobjectsurvivaltermforobjectsspawnedbyexistingobjectsMarkovtransitiondensitypredictedintensityNk|k-1=vk|k-1
(x|Z1:k-1)dxpredictedexpectednumberofobjects(Fk|k-1a)(xk)
=
fk|k-1(xk,x)a(x)dx
+gk(xk)
vk|k-1=
Fk|k-1vk-124ThePHDFilter:PredictionThePHDFilter:Update
vk(xk|Z1:k)
[
SzZkDk(z)+kk(z)
pD,k(xk)gk(z|xk)
+1-
pD,k(xk)]vk|k-1(xk|Z1:k-1)
Dk(z)=pD,k(x)gk(z|x)vk|k-1(x|Z1:k-1)dx
Nk=vk(x|Z1:k)dxBayes-updatedintensitypredictedintensity(fromprevioustime)intensityoffalsealarmssensorlikelihoodfunctionprobabilityofdetectionexpectednumberofobjectsmeasurementvk
=
Ykvk|k-1(Yka)(x)
=zZk<yk,z,a>+kk(z)
yk,z(x)
+1-
pD,k(x)]a(x)[
S25ThePHDFilter:Updatevk(ThePHDFilter
vk-1(.
|Z1:k-1)vk(.
|Z1:k)
vk|k-1(.
|Z1:k-1)GaussianMixturePHDFilter[VM05,06],
ParticlePHDFilter[VSD03,05],[Mahler&Zajic03],[Sidenbladh03]{wk-1,xk-1}j=1Jk-1(j)(j)j=1Jk|k-1(j)(j){wk|k-1,xk|k-1}{wk,xk}
j=1
Jk(j)(j){wk-1,mk-1,Pk-1}j=1Jk-1(j)(j)(j){wk|k-1,mk|k-1,Pk|k-1}j=1Jk|k-1(j)(j)(j){wk,mk,Pk}
j=1
Jk(j)(j)(j)26ThePHDFiltervk-1(.|Z1ThePHDfilterExtended&UnscentedKalmanPHDfilter[VM06]JumpMarkovPHDfilter[Pashaet.al.06]Trackcontinuity[Clarket.al.06]Convergence[Clarket.al.07]BritishPetrolium(Pipelinetracking)07Visualtracking[Phamet.al.07]Celltracking[Juanget.al.09]Bistaticradar[Tobias&Lanterman05]
Tracklabellingtrackassociation[Pantaet.al.07,Linet.al06]Convergence[VDS05,Johansenetal07,Clark&Bell06,]Computervision[Maggioet.al.07,Wanget.al.2008,]AuxiliaryparticlePHDfilter[Whitleyet.al.07]Trafficintensityestimation[Battistelliet.al.08]Particle-PHDfilter[VSD03,05]
GM-PHDfilter[VM05,06]27ThePHDfilterExtended&UThePHDfilterVideodata:trackingfootballplayers[Phametal.07]DatacourtesyofCzyzet.al.28ThePHDfilterVideodata:ThePHDfilterVideotrackingofpeoplewalking(340frames)[Phametal.07]DatacourtesyofK.SmithIDIAPResearchInstitute.29ThePHDfilterVideotrackiTheCardinalisedPHDFilterDrawbackofPHDfilter:Highvarianceofcardinalityestimate
RelaxPoissonassumption:allowsanycardinalitydistributionJointlypropagate:intensityfunction&cardinalitydistribution.
HighercomputationalcostthanPHDStillcheaperthanstate-of-the-arttraditionaltechniquesCPHDfilter[Mahler06,07],GaussianMixtureCPHDfilter[VVC06,07]vk-1(xk-1|Z1:k-1)vk(xk|Z1:k)
vk|k-1(xk|Z1:k-1)intensitypredictionintensityupdateck-1(n|Z1:k-1)ck(n|Z1:k)
ck|k-1(n|Z1:k-1)cardinalitypredictioncardinalityupdate30TheCardinalisedPHDFilteGMTIRadar[Ulmkeet.al.07]TestedbyFGAN(NATOBoldAvengerexercise)07,Acousticsourcetracking[Phamet.al.08]TestedonMSTWGandSEABARDatasets[Erdincet.al.08]ComparisonwithMHT[Svenssonetal.09]Convoytracking[Pollardet.al.09]Trackingfromaerialimage[Pollardet.al.09]LockheedMartin(SpaceFence)09.GM-CPHDfilter[VVC05,06]TheCardinalisedPHDFilter31GMTIRadar[Ulmkeet.al.07]GSonarimagesTheCardinalisedPHDFilter32SonarimagesTheCardinalisLargescalemultipletargettrackingwithsmallfalsealarmrateCourtesyofLockheedMartinTheCardinalisedPHDFilter33LargescalemultipletargettrUpto1500closelyspacedtargetsonastandardlaptop!CourtesyofLockheedMartinOSPAdistance(satisfiesallmetricaxioms)=pertargetcardinality&stateerrorTheCardinalisedPHDFilter34Upto1500closelyspacedtargSLAM(SimultaneousLocalisationandMapping)Objective:Jointlyestimaterobotpose&map(setoflandmarks)ThePHDFilterinSLAM35SLAM(SimultaneousLocalisatioThePHDFilterinSLAMRobotposeMapMeasurementsControlsMeasurementlikelihoodSetintegralTransitiondensityRFS-SLAMpredictionRFS-SLAMupdate(Feature)Map=finitesetoflandmarksBayesianSLAMrequiresmodellingthemapbyanRFSSetintegralRFS-SLAM[Mullaneet.al.08]36ThePHDFilterinSLAMRoboMapping:specialcaseofSLAMwithknownrobotposesPHDapproximation:propagate1stmomentofthemapRFSPHDoftheposteriormapRFSThePHDFilterinSLAM37Mapping:specialcaseofSLAMMapping:specialcaseofSLAMwithknownrobotposesThePHDFilterinSLAM38Mapping:specialcaseofSLAMExperiment:NanyangTechnologicalUniversityCampus
PHDSLAM(approximationofRFS-SLAMrecursion):AugmentlandmarkswiththevehicleposeRepresentsetofaugmentedlandmarksasamarkedpointprocessPropagatePHDofthemarkedpointprocessThePHDFilterinSLAM39Experiment:NanyangTechnologiLowclutter:All3algorithmscanclosetheloopHigherclutter:OnlyPHD-SLAMcanclosetheloopGroundtruthplottedingreenThePHDFilterinSLAM40Lowclutter:Higherclutter:GroConcludingRemarksThankYou!RandomFiniteSetFilteringBorneoutofpractical&fundamentalnecessity
SignificanttheoreticalextensionofclassicalfilteringYieldsefficientalgorithmssuchasthePHDfiltersBeyondthePHDfilters
Multi-Bernoulli,Gauss-PoissonfiltersFilteringwithimagedataRobustnessStochasticcontrolFormoreinfopleasesee.auSeealso:.au/staff/bv/publications.html41ConcludingRemarksThankYouSomeReferencesBooksD.DaleyandD.Vere-Jones,AnIntroductiontotheTheoryofPointProcesses,Springer-Verlag,1988.D.Stoyan,D.Kendall,J.Mecke,StochasticGeometryanditsApplications,JohnWiley&Sons,1995I.Goodman,R.Mahler,andH.Nguyen,MathematicsofDataFusion.KluwerAcademicPublishers,1997.R.Mahler,StatisticalMultisource-MultitargetInformationFusion,ArtechHouse,2007.M.Mallick,V.Krisnamurthy,B.-N.Vo(eds),AdvancedTopicsandApplicationsinIntegratedTracking,Classification,andSensorManagement,IEEE-Wiley(underreview)PapersR.Mahler,“Multi-targetBayesfilteringviafirst-ordermulti-targetmoments,”IEEETrans.AES,vol.39,no.4,pp.1152–1178,2003.B.-N.Vo,S.Singh,andA.Doucet,“SequentialMonteCarlomethodsformulti-targetfilteringwithrandomfinitesets,”IEEETrans.AES,vol.41,no.4,pp.1224–1245,2005.B.-N.Vo,andW.K.Ma,“TheGaussianmixturePHDfilter,”IEEETrans.SignalProcessing,IEEETrans.SignalProcessing,Vol.54,No.11,pp.4091-4104,2006.
R.Mahler,“PHDfilterofhigherorderintargetnumber,”IEEETrans.Aerospace&ElectronicSystems,vol.43,no.4,pp.1523–1543,2007B.T.Vo,B.-N.Vo,andA.Cantoni,"AnalyticimplementationsoftheCardinalizedProbabilityHypothesisDensityFilter,"IEEETrans.SignalProcessing,Vol.55,
No.7,
Part2,
pp.3553-3567,2007.B.-T.Vo,B.-NVo,andA.Cantoni,"TheCardinalityBalancedMulti-targetMulti-Bernoullifilteranditsimplementations,"IEEETrans.SignalProcessing,vol.57,no.2,pp.409–423,2009.J.Mullane,B.-N.Vo,M.AdamsandS.Wijesoma,"ARandomSetFormulationforBayesianSLAM,"InternationalConferenceonIntelligentRobotsandSystems,Nice,France,2008.
42SomeReferencesBooks42Collaborators(innoparticularorder)MahlerR., LockheedMartinSinghS., CambridgeDoucetA., U.BritishColumbiaMaW.K., ChineseU.HongKongPantaK., BAESystemsBaddeleyA., U.WesternAustraliaClarkD., Herriot-WattU.VoB.T., U.WesternAustraliaCantoniA., U.WesternAustraliaPashaA., U.NewSouthWalesTuanH.D., U.NewSouthWalesZuyevS., U.StrathclydeMullaneJ., NanyangTechnologicalU.AdamsM., NanyangTechnologicalU.WijesomaS., NanyangTechnologicalU.SchumacherD., U.BernRisticB., DSTOAustraliaGuernJ., LockheedMartinPhamT., INRIASuterD. U.Adelaide43Collaborators(innoparticRandomFiniteSetsinStochasticFilteringBa-NguVo
EEEDepartment
UniversityofMelbourne
Australia.au/staff/bv/IEEEVictorianChapterJuly28,2009RandomFiniteSetsinStochastStochasticFilteringHistoryN.Wiener(1894-1964)
A.N.Kolmogorov(1903-1987)R.E.Kalman(1930-)1940’s:Wienerfilter PioneeringworkbyWiener,Kolmogorov1950’s:Kalmanfilter WorkbyBode&Shannon,Zadeh&Ragazzini,Levinson,Swerling,Stratonovich,etc.1970’s:Aerospaceapplications Sorenson&Alspach,Singer,Bar-Shalom,Reid,etc.1960’s:
PublicationoftheKalmanfilter,Kalman-Bucyfilter,Schmidt’s1stimplementation–ApolloprogramLMSalgorithmbyWidrow&Hoff45StochasticFilteringHistoParticleFilter(1990’s--) Computationaltoolsfornon-linearnon-Gaussianfiltering Gordon,Salmond&Smith,Doucet…RandomFiniteSet(1990’s--)
Unifiedframeworkformulti-objectfiltering&control ProbabilityHypothesisDensity(PHD)filters,Bernoullifilter PioneeringworkbyMahlerStochasticFiltering:ThePresent46ParticleFilter(1990’s--)RandTheBayes(nonlinear)FilterPracticalChallengesMulti-ObjectFilteringRandomFiniteSetPHD/CPHDFilters&ApplicationsConclusionsOutline47TheBayes(nonlinear)FilterTheBayes(nonlinear)Filterstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zk
fk|k-1(xk|xk-1)MarkovTransitionDensityMeasurementLikelihoodgk(zk|xk)Objectivemeasurementhistory
(z1,…,zk)posteriorpdfofthestatepk(xk|z1:k)SystemModel48TheBayes(nonlinear)Filtstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkBayesfilterpk-1(xk-1
|z1:k-1)pk|k-1(xk|z1:k-1)pk(xk|z1:k)predictiondata-update
pk-1(xk-1|z1:k-1)
dxk-1
fk|k-1(xk|xk-1)gk(zk|xk)
pk|k-1(xk|z1:k-1)TheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)
gk(zk|xk)pk-1(xk-1|z1:k-1)dxk49state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkTheBayes(nonlinear)Filter
fk|k-1(xk|xk-1)gk(zk|xk)pk-1(.
|z1:k-1)pk|k-1(.
|z1:k-1)pk(.
|z1:k)predictiondata-updateBayesfilterN(.;mk-1,Pk-1)N(.;mk|k-1,Pk|k-1)N(.;mk,Pk)Kalmanfilteri=1N{wk|k-1,xk|k-1}i=1N(i)(i){wk,xk}
i=1
N(i)(i){wk-1,xk-1}(i)(i)Particlefilter50state-vectorstatedynamicstatestate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallenges
fk|k-1(xk|xk-1)gk(zk|xk)Sofar,weassumedexactly1observationateachtime
HoldsonlyforasmallnumberofapplicationsPracticalmeasuringdevice:mayfailtodetecttrueobservation(detectionuncertainty)&picksupfalseobservations(clutter)51state-vectorstatedynamicstatePracticalChallengesNotdetectedDetectionuncertainty:DetectedFalseobservations(clutter)orNumberoffalseobservationsunknownrandomFalse52PracticalChallengesNotdPracticalChallengesNoinformationonwhichistheobservationofthestateNumberofobservationsisarandomvariable.‘+’Observation=NotdetectedDetectedFalse53PracticalChallengesNoinstate-vectorstatedynamicstatespaceobservationspacexkxk-1zk-1zkPracticalChallengesSummaryofpracticalchallenges:Numberofobservationsisrandom&timevaryingTrueobservationmaynotbepresentDonotknowwhichobservationsarefalse/trueOrderingofobservationsnotrelevant54state-vectorstatedynamicstateobservation
producedbyobjectsstatedynamicstatespaceobservationspace5objects3objectsXk-1XkObjective:Jointlyestimatethenumber&statesofobjectsNumerousapplications:defence,surveillance,robotics,biomed,…Challenges:RandomnumberofobjectsandmeasurementsDetectionuncertainty,clutter,associationuncertaintyMulti-ObjectFiltering55observationproducedbyobjeEstimateiscorrectbutestimationerror???TrueMulti-objectstateEstimatedMulti-objectstateHowcanwemathematicallyrepresentthemulti-objectstate?2objectsUsualpractice:stackindividualstatesintoalargevector!2objectsRemedy:useFundamentalinconsistency:Multi-ObjectFiltering56EstimateiscorrectbutestimaTrueMulti-objectstateEstimatedMulti-objectState2objectsnoobjectTrueMulti-objectstateEstimatedMulti-objectState2objects1objectWhataretheestimationerrors?
Multi-ObjectFiltering57TrueEstimated2objectsnoobjecMiss-distance:errorbetweenestimateandtruestatemeasureshowcloseanestimateistothetruevaluewell-understoodforsingletarget:Euclideandistance,MSE,etcfundamentalinestimation/filtering&controlVectorrepresentationdoesn’tadmitmulti-objectmiss-distanceFinitesetrepresentationadmitsmulti-objectmiss-distance,e.g.Haussdorf,Wasserstein,OSPA[Schuhmacheret.al.08]Infactthe“distance” isadistanceforsetsnotvectorsMulti-ObjectFiltering58Miss-distance:errorbetweeneMulti-ObjectFilteringstatesmulti-objectstatemulti-objectobservationXobservationsXZ
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateReconceptualiseasafiniteset-valuedfilteringproblemMulti-objectstate&observationrepresentedbyfinitesetsBayesianframeworktreatsstate/observationasrandomvariablesBayesianmulti-objectfiltering
requiresrandomfiniteset(RFS)59Multi-ObjectFilteringstatRandomFiniteSetThenumberofpointsisrandom,ThepointshavenoorderingandarerandomAnRFSisafiniteset-valuedrandomvariableAlsoknownas:pointprocessorrandompointpatternWhatisarandomfiniteset(RFS)?Example1:BernoulliRFSsample
u~uniform[0,1]if
u<r,
sample
x~p(.),end;
EExample2:multi-BernoulliRFS=
UnionofBernoulliRFSs60RandomFiniteSetThenumbeRandomFiniteSetESamplen
~Poiss(r),
fori=1:n,
sample
xi~p(.),end;
Example3:PoissonRFSESamplen
~c(.),
fori=1:n,
sample
xi~p(.),end;
Example4:i.i.d.clusterRFS61RandomFiniteSetESamplenRandomFiniteSetNeedsuitablenotionsofdensity/integrationforfiniteset
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-update??statesmulti-objectstatemulti-objectobservationXobservationsXZMulti-objectBayesfilter62RandomFiniteSetNeedsuitRandomFiniteSetBelief“density”
ofS
fS:F(E)
®[0,¥)
bS
(T)
=
òT
fS
(X)dXBelief“distribution”
ofSbS
(T)=P(SÍT),TÍ
EESProbabilitydensity
ofS
pS:F(E)
®[0,¥)
PS
(T
)
=
òT
pS
(X)m(dX)Probabilitydistribution
ofSPS
(T
)=P(SÎT),
T
Í
F(E)F(E)SCollectionoffinitesubsetsof
E
Statespace
Mahler’sFiniteSetStatistics(1994)Choquet(1968)TTConventionalintegralSetintegralPointProcessTheory(1950-1960’s)VSD(2005)63RandomFiniteSetBelief“d
Computationallyexpensive!single-objectBayesfilter
multi-objectBayesfilter
stateofsystem:
randomvectorfirst-momentfilter(e.g.
a-b-g
filter)stateofsystem:
randomsetfirst-momentfilter(“PHD”filter)
Single-object
Multi-objectThePHDFilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictiondata-updateMulti-objectBayesfilter64Computationallyexpensive!sinThePHDFilterx0statespacevPHD(intensityfunction)ofanRFSS
v(x)dx
=expectednumberofobjectsin
SSv(x0)
=densityofexpectednumberofobjectsat
x065ThePHDFilterx0statespacThePHDFilterstatespace
vk
vk-1
PHDfilter[Mahler03]vk-1(xk-1|Z1:k-1)vk(xk|Z1:k)
vk|k-1(xk|Z1:k-1)PHDpredictionPHDupdateMulti-objectBayesfilter
pk-1(Xk-1|Z1:k-1)
pk(Xk|Z1:k)
pk|k-1(Xk|Z1:k-1)predictionupdateAvoidsdataassociation!66ThePHDFilterstatespaceThePHDFilter:Predictionvk|k-1(xk
|Z1:k-1)=fk|k-1(xk,xk-1)
vk-1(xk-1|Z1:k-1)dxk-1+gk(xk)
intensityfromprevioustime-step
termforspontaneousobjectbirthsfk|k-1(xk,xk-1)=ek|k-1(xk-1)fk|k-1(xk|xk-1)+bk|k-1(xk|x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 综合制剂车间课程设计
- 中西医助理医师考试中医内科学总结要点大全
- 自然大调音阶的课程设计
- 中考英语各种题材阅读理解强化训练(附详解)
- 学年论文和课程设计
- (CFG及真空联合堆载预压)软基处理施工方案
- 《机械通气的应用》课件
- 油库课程设计书封面图案
- 模拟电子琴设计课程设计
- 知识产权活动课程设计
- 【MOOC期末】《电子技术实习SPOC》(北京科技大学)期末慕课答案
- 新媒体技术基础知识单选题100道及答案解析
- 2025蛇年带横批春联对联200副带横批
- 互联网+创新商业模式考核试卷
- 江苏省扬州市梅岭中学2023-2024学年七年级上学期期末地理试题(含答案)
- 克罗恩病病例分析
- 《冠心病》课件(完整版)
- DB43T 1694-2019 集体建设用地定级与基准地价评估技术规范
- 高级技师电工培训
- DZ/T 0462.3-2023 矿产资源“三率”指标要求 第3部分:铁、锰、铬、钒、钛(正式版)
- Lesson-1.-spring-festival(双语课件-春节)
评论
0/150
提交评论