天津市滨海七所重点学校2021-2022学年高三下学期第六次检测数学试卷含解析_第1页
天津市滨海七所重点学校2021-2022学年高三下学期第六次检测数学试卷含解析_第2页
天津市滨海七所重点学校2021-2022学年高三下学期第六次检测数学试卷含解析_第3页
天津市滨海七所重点学校2021-2022学年高三下学期第六次检测数学试卷含解析_第4页
天津市滨海七所重点学校2021-2022学年高三下学期第六次检测数学试卷含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥m.下列命题为真命题的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)2.已知函数的一条切线为,则的最小值为()A. B. C. D.3.已知向量,,则与的夹角为()A. B. C. D.4.棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为()A. B. C. D.15.已知定义在上的偶函数,当时,,设,则()A. B. C. D.6.已知平面向量,满足,且,则与的夹角为()A. B. C. D.7.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.8.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A. B.C. D.9.的展开式中,满足的的系数之和为()A. B. C. D.10.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.11.复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知是边长为的正三角形,若,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是____________.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.15.设,若关于的方程有实数解,则实数的取值范围_____.16.数列的前项和为,则数列的前项和_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.18.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.19.(12分)已知正数x,y,z满足xyzt(t为常数),且的最小值为,求实数t的值.20.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).21.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.22.(10分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且∥平面(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.2.A【解析】

求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.3.B【解析】

由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.4.C【解析】

连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OH⊥MN,推导出OH∥RQ,且OH=RQ=,由此能求出该直线被球面截在球内的线段的长.【详解】如图,MN为该直线被球面截在球内的线段连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故选:C.【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5.B【解析】

根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.6.C【解析】

根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.7.B【解析】

根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.8.D【解析】

首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,显然,又易得,所以,,故.故选:D.【点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.9.B【解析】

,有,,三种情形,用中的系数乘以中的系数,然后相加可得.【详解】当时,的展开式中的系数为.当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为.故选:B.【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键.10.A【解析】

过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.11.A【解析】

试题分析:由题意可得:.共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系12.A【解析】

由可得,因为是边长为的正三角形,所以,故选A.二、填空题:本题共4小题,每小题5分,共20分。13.2【解析】

由这五位同学答对的题数分别是,得该组数据的平均数,则方差.14.【解析】

①根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解;②结合①求出,根据面积公式即可得解.【详解】①2(sin32°•cos77°﹣cos32°•sin77°),②,,∴,∴.故答案为:.【点睛】此题考查平面向量与三角函数解三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.15.【解析】

先求出,从而得函数在区间上为增函数;在区间为减函数.即可得的最大值为,令,得函数取得最小值,由有实数解,,进而得实数的取值范围.【详解】解:,当时,;当时,;函数在区间上为增函数;在区间为减函数.所以的最大值为,令,所以当时,函数取得最小值,又因为方程有实数解,那么,即,所以实数的取值范围是:.故答案为:【点睛】本题考查了函数的单调性,函数的最值问题,导数的应用,属于中档题.16.【解析】

解:两式作差,得,经过检验得出数列的通项公式,进而求得的通项公式,裂项相消求和即可.【详解】解:两式作差,得化简得,检验:当n=1时,,所以数列是以2为首项,2为公比的等比数列;,,令故填:.【点睛】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】

(1)通过讨论的范围,分为,,三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.【详解】(1)当时,原不等式等价于,解得,所以,当时,原不等式等价于,解得,所以此时不等式无解,当时,原不等式等价于,解得,所以综上所述,不等式解集为.(2)由,得,当时,恒成立,所以;当时,.因为当且仅当即或时,等号成立,所以;综上的取值范围是.【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.18.(1)见解析;(2).【解析】

(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原点,建立如图所示空间直角坐标系,设,求解面的法向量,面的法向量,利用二面角的余弦值为,可求解,转化即得解.【详解】(1)证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,所以平面.又,所以平面.因为平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以为坐标原点,建立如图所示空间直角坐标系.则.于是,,.设面的一个法向量,由得令,则,即.设,易得,.设面的一个法向量,由得令,则,,即.依题意,即,令,则,即,即.所以.【点睛】本题考查了空间向量和立体几何综合,考查了面面垂直的判断,二面角的向量求解,三棱锥的体积等知识点,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.19.t=1【解析】

把变形为结合基本不等式进行求解.【详解】因为即,当且仅当,,时,上述等号成立,所以,即,又x,y,z>0,所以xyzt=1.【点睛】本题主要考查基本不等式的应用,利用基本不等式求解最值时要注意转化为适用形式,同时要关注不等号是否成立,侧重考查数学运算的核心素养.20.(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】

(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当时,,,当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,,当时,,在上单调递增,即函数的值域为;当时,,在上单调递减,即函数的值域为;当时,易得时,,在上单调递增,时,,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,,最小值;当,,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的值域为.【点睛】本题主要考查利用导数求单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分类讨论的数学思想.21.(1)证明见解析;(2)【解析】

(1)取AB的中点O,连接,证得,从而证得C′O⊥平面ABD,再结合面面垂直的判定定理,即可证得平面⊥平面;(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)取AB的中点O,连接,,在Rt△和Rt△ADB中,AB=2,则=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O⊂平面,所以平面⊥平面DAB(2)以O为原点,AB,OC所在的直线为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论