2020届数学中考复习专项训练通用版:滚动小专题(九) 与图形变化有关的简单计算与证明_第1页
2020届数学中考复习专项训练通用版:滚动小专题(九) 与图形变化有关的简单计算与证明_第2页
2020届数学中考复习专项训练通用版:滚动小专题(九) 与图形变化有关的简单计算与证明_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

滚动小专题(九)与图形变化有关的简单计算与证明1.(2019·荆门)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则B点的对应点B′的坐标是(A)A.(,-1)

B.(1,-)C.(2,0)

D.(,0)2.(2019·辽阳)如图,直线EF是矩形ABCD的对称轴,点P在CD边上,将△BCP沿BP折叠,点C恰好落在线段AP与EF的交点Q处,BC=4,则线段AB的长是(A)A.8

B.8C.8

D.103.(2019·广元)如图,在△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是8+4.4.(2019·河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则a的值为或.5.(2019·绥化)如图,已知△ABC三个顶点的坐标分别为A(-2,-4),B(0,-4),C(1,-1).(1)请在网格中画出线段BC关于原点对称的线段B1C1;(2)请在网格中过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(-3,-3),连接PC,则tan∠BCP=1.解:(1)如图.(2)如图,点D坐标为(-1,-4).6.如图,将▱ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.解:(1)证明:由折叠可知∠CDB=∠EDB.∵四边形ABCD是平行四边形,∴DC∥AB.∴∠CDB=∠EBD.∴∠EDB=∠EBD.(2)AF∥DB,理由如下:∵∠EDB=∠EBD,∴DE=BE.由折叠可知DC=DF.∵四边形ABCD是平行四边形,∴DC=AB.∴DF=AB.∴AE=EF.∴∠EAF=∠EFA.在△BED中,∠EDB+∠EBD+∠DEB=180°,∴2∠EDB+∠DEB=180°.同理,在△AEF中,2∠EFA+∠AEF=180°.∵∠DEB=∠AEF,∴∠EDB=∠EFA.∴AF∥DB.7.(2019·福建)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是D,E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.解:(1)∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°.∵CA=CD,∴∠CAD=∠CDA=×(180°-30°)=75°.∴∠ADE=90°-75°=15°.(2)证明:∵点F是边AC中点,∴BF=AC=AF=CF.∵∠ACB=30°,∴∠FBC=∠ACB=30°,AB=AC.∴BF=AB.∵△ABC绕点A顺时针旋转60°得到△DEC,∴∠BCE=60°,CB=CE,DE=AB,∠DEC=∠ABC=90°.∴DE=BF,△BCE为等边三角形.∴∠EBC=∠BEC=60°.∴∠BED=90°+60°=150°,∠EBF=60°-30°=30°.∴∠BED+∠EBF=180°.∴BF∥DE.又∵BF=DE,∴四边形BEDF是平行四边形.8.在等边△ABC中:图1

图2

(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为点M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验,提出猜想:在P,Q运动的过程中,始终有PA=PM.小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△PAM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM.想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK.……请你参考上面的想法,帮助小茹证明PA=PM.(一种方法即可)解:(1)∵AP=AQ,∴∠AQB=∠APC.又∵∠APC=∠B+∠BAP=60°+20°=80°,∴∠AQB=80°.(2)①如图所示.②证明:∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°.又∵AP=AQ,∴∠APQ=∠AQB.∴∠BAP+∠ABC=∠APQ=∠AQB=∠CAQ+∠ACB.∴∠BAP=∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论