




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数()的最小值为0,则()A. B. C. D.2.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.4.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为()A. B. C. D.5.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知正方体的棱长为,,,分别是棱,,的中点,给出下列四个命题:①;②直线与直线所成角为;③过,,三点的平面截该正方体所得的截面为六边形;④三棱锥的体积为.其中,正确命题的个数为()A. B. C. D.7.已知集合,则集合()A. B. C. D.8.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}9.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.1110.已知(),i为虚数单位,则()A. B.3 C.1 D.511.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.212.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有两个极值点、,则的取值范围为_________.14.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.15.在中,已知,则的最小值是________.16.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:同意不同意合计男生a5女生40d合计100(1)求a,d的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为X,求X的分布列及数学期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63518.(12分)已知函数.(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性.19.(12分)在三角形中,角,,的对边分别为,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)已知各项均为正数的数列的前项和为,且,(,且)(1)求数列的通项公式;(2)证明:当时,21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.22.(10分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
设,计算可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作出函数的大致图像,结合图像,,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.2.C【解析】
讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.3.C【解析】
以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.【点睛】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.4.A【解析】
根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率.【详解】由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为.故选:A.【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数.5.A【解析】
由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.6.C【解析】
画出几何体的图形,然后转化判断四个命题的真假即可.【详解】如图;连接相关点的线段,为的中点,连接,因为是中点,可知,,可知平面,即可证明,所以①正确;直线与直线所成角就是直线与直线所成角为;正确;过,,三点的平面截该正方体所得的截面为五边形;如图:是五边形.所以③不正确;如图:三棱锥的体积为:由条件易知F是GM中点,所以,而,.所以三棱锥的体积为,④正确;故选:.【点睛】本题考查命题的真假的判断与应用,涉及空间几何体的体积,直线与平面的位置关系的应用,平面的基本性质,是中档题.7.D【解析】
弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.8.B【解析】
按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.9.D【解析】
由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.10.C【解析】
利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.11.D【解析】
根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.12.B【解析】
先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
确定函数的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求的取值范围.【详解】函数的定义域为,,依题意,方程有两个不等的正根、(其中),则,由韦达定理得,,所以,令,则,,当时,,则函数在上单调递减,则,所以,函数在上单调递减,所以,.因此,的取值范围是.故答案为:.【点睛】本题考查了函数极值点问题,考查了函数的单调性、最值,将的取值范围转化为以为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.14.【解析】
画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:.故答案为:.【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意15.【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.16.4038.【解析】
由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【点睛】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析.【解析】
(1)根据表格及同意父母生“二孩”占60%可求出,,根据公式计算结果即可确定有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题意可知X服从二项分布,利用公式计算概率及期望即可.【详解】(1)因为100人中同意父母生“二孩”占60%,所以,文(2)由列联表可得而所以有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)①由题知持“同意”态度的学生的频率为,即从学生中任意抽取到一名持“同意”态度的学生的概率为.由于总体容量很大,故X服从二项分布,即从而X的分布列为X01234X的数学期望为【点睛】本题主要考查了相关性检验、二项分布,属于中档题.18.(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【解析】
(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【详解】(1)当时,,则切线的斜率为.又,则曲线在点的切线方程是,即.(2)的定义域是..①当时,,所以当时,;当时,,所以在上单调递增,在上单调递减;②当时,,所以当和时,;当时,,所以在和上单调递增,在上单调递减;③当时,,所以在上恒成立.所以在上单调递增;④当时,,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【点睛】本题主要考查了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.19.(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根据同角的三角函数的关系和两角和的正弦公式和正弦定理即可求出.【详解】(Ⅰ)由余弦定理,所以,所以,即,因为,所以;(Ⅱ)因为,所以,因为,,由正弦定理得,所以.【点睛】本题考查利用正弦定理与余弦定理解三角形,属于简单题.20.(1)(2)见证明【解析】
(1)由题意将递推关系式整理为关于与的关系式,求得前n项和然后确定通项公式即可;(2)由题意结合通项公式的特征放缩之后裂项求和即可证得题中的不等式.【详解】(1)由,得,即,所以数列是以为首项,以为公差的等差数列,所以,即,当时,,当时,,也满足上式,所以;(2)当时,,所以【点睛】给出与的递推关系,求an,常用思路是:一是利用转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.21.(1)(2)(3)直线平面,证明见解析【解析】
取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,求出平面的一个法向量.(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加盟保洁公司合同范本
- 2024年盐城市滨海县招聘教师考试真题
- 农村房屋共建合同范例
- 2024年梧州市龙圩区招录公益性岗位人员考试真题
- 公司之间供货合同范本
- 动产转让合同范本
- 2024年普洱市墨江县教体系统所属事业单位紧缺招聘考试真题
- 2024年绵阳市投资控股有限公司招聘笔试真题
- 第12课 宋元时期的都市和文化(教学设计)七年级历史下册同步备课系列(部编版)
- 做代理合同范本
- 中国传媒大学全媒体新闻编辑:案例教学-课件-全媒体新闻编辑:案例教学-第7讲
- 生理学泌尿系统6学时课件
- PySide学习教程
- 数据结构英文教学课件:chapter1 Introduction
- 人教三年级数学下册表格式全册
- 事业单位综合基础知识考试题库 综合基础知识考试题库.doc
- 优秀教研组评比制度及实施细则
- 物业交付后工程维修工作机制
- 农作物病虫害专业化统防统治管理办法
- JJF 1752-2019全自动封闭型发光免疫分析仪校准规范(高清版)
- GB 1886.300-2018 食品安全国家标准 食品添加剂 离子交换树脂(高清版)
评论
0/150
提交评论