版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为()A. B. C. D.2.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数3.如图1所示的是山西大同北都桥的照片,桥上面的部分是以抛物线为模型设计而成的,从正面观察该桥的上面部分是一条抛物线,如图2,若,以所在直线为轴,抛物线的顶点在轴上建立平面直角坐标系,则此桥上半部分所在抛物线的解析式为()A. B.C. D.4.已知分式的值为0,则的值是().A. B. C. D.5.下列实数:,其中最大的实数是()A.-2020 B. C. D.6.已知关于x的一元二次方程的一个根为1,则m的值为()A.1 B.-8 C.-7 D.77.如图,在△中,,,垂足为,若,,则的值为()A. B.C. D.8.如图,将Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得点C′与△ABC的内心重合,已知AC=4,BC=3,则阴影部分的周长为()A.5 B.6 C.7 D.89.在▱ABCD中,∠A﹣∠B=40°,则∠C的度数为()A.70° B.40° C.110° D.150°10.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为()A. B. C. D.二、填空题(每小题3分,共24分)11.关于的一元二次方程的一个根,则另一个根______.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.13.如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.14.已知,点A(-4,y1),B(,y2)在二次函数y=-x2+2x+c的图象上,则y1与y2的大小关系为________.15.如图所示,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转,得,则点的坐标为_________.16.如图,的弦,半径交于点,是的中点,且,则的长为__________.17.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.18.Rt△ABC中,∠C=90°,AB=10,,则BC的长为____________.三、解答题(共66分)19.(10分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.20.(6分)如图,在中,,的平分线交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交,于点,(1)试判断直线与的位置关系,并说明理由.(2)若,,求阴影部分的面积(结果保留)21.(6分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.22.(8分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
23.(8分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;(2)的正弦值为.24.(8分)如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(-3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形.若存在,求出点P的坐标;若不存在,请说明理由.25.(10分)如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.(1)求点A和B的坐标;(2)连结OA,OB,求△OAB的面积.26.(10分)平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】把一个数表示成的形式,其中,n是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】0.00000065=,故选:B.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,整数等于原数左起第一个非零数字前0的个数,按此方法即可正确求解.2、A【解析】根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】由于关于x的方程ax2+bx+c=1是一元二次方程,所以二次项系数不为零,即a≠1.故选:A.【点睛】此题考查一元二次方程的定义,熟记一元二次方程满足的条件即可正确解题.3、A【分析】首先设抛物线的解析式y=ax2+bx+c,由题意可以知道A(-30,0)B(30,0)C(0,15)代入即可得到解析式.【详解】解:设此桥上半部分所在抛物线的解析式为y=ax2+bx+c∵AB=60OC=15∴A(-30,0)B(30,0)C(0,15)将A、B、C代入y=ax2+bx+c中得到y=-x2+15故选A【点睛】此题主要考查了二次函数的实际应用问题,主要培养学生用数学知识解决实际问题的能力.4、D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到=0且≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据≠0,即可得到x的取值范围,由此即得答案.【详解】∵的值为0∴=0且≠0.解得:x=3.故选:D.【点睛】考核知识点:分式值为0.理解分式值为0的条件是关键.5、C【解析】根据正数大于0,0大于负数,正数大于负数,比较即可;【详解】∵=-2020,=-2020,=2020,=,∴,故选C.【点睛】本题主要考查了实数大小比较,掌握实数大小比较是解题的关键.6、D【解析】直接利用一元二次方程的解的意义将x=1代入求出答案即可.【详解】∵关于x的一元二次方程x2+mx−8=0的一个根是1,∴1+m−8=0,解得:m=7.故答案选:D.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.7、D【分析】在△中,根据勾股定理可得,而∠B=∠ACD,即可把求转化为求.【详解】在△中,根据勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故选D.【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.8、A【分析】由三角形面积公式可求C'E的长,由相似三角形的性质可求解.【详解】解:如图,过点C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延长C'E交A'B'于点F,连接AC',BC',CC',∵点C'与△ABC的内心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,
∴C'E=C'G=C'H,
∵S△ABC=S△AC'C+S△AC'B+S△BC'C,∴AC×BC=AC×CC'+BA×C'E+BC×C'H∴C'E=1,
∵将Rt△ABC平移到△A'B'C'的位置,
∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3
∴C'F⊥A'B',A'B'=5,∴A'C'×B'C'=A'B'×C'F,∴C'F=,∵AB∥A'B'
∴△C'MN∽△C'A'B',∴C阴影部分=C△C'A'B'×=(5+3+4)×=5.故选A.【点睛】本题考查了三角形的内切圆和内心,相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.9、C【分析】由题意根据平行四边形的对角相等以及邻角之和为180°,即可求出该平行四边形各个内角的度数.【详解】解:由题意画出图形如下所示:则∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=∠A=110°.故选:C.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等以及邻角之和为180°进行分析.10、A【分析】设PQ与AC交于点O,作⊥于,首先求出,当P与重合时,PQ的值最小,PQ的最小值=2.【详解】设与AC交于点O,作⊥于,如图所示:
在Rt△ABC中,∠BAC=90,∠ACB=45,
∴,∵四边形PAQC是平行四边形,
∴,∵⊥,∠ACB=45,∴,当与重合时,OP的值最小,则PQ的值最小,
∴PQ的最小值故选:A.【点睛】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】设方程的另一个根为x2,根据根与系数的关系可得出4+x2=4,解之即可得出结论.【详解】设方程的另一个根为x2,根据题意得:4+x2=4,∴x2=1.故答案为:1.【点睛】本题考查了根与系数的关系,牢记两根之和等于、两根之积等于是解题的关键.12、30°【分析】由旋转的性质可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形内角和定理可求∠BCD=80°=∠ACE,由外角性质可求解.【详解】解:∵将△ABC绕点C顺时针旋转,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案为:30°.【点睛】本题考查了旋转的性质,三角形内角和与三角形外角和性质,解决本题的关键是正确理解题意,熟练掌握旋转的性质,能够由旋转的到相等的角.13、1【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D
(4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.【详解】∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D
(4,2),反比例函数的图象经过点D,∴k=8,C点的纵坐标是2×2=4,∴,把y=4代入得:x=2,∴n=3−2=1,∴向左平移1个单位长度,反比例函数能过C点,故答案为1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.14、【分析】由题意可先求二次函数y=-x2+2x+c的对称轴为,根据点A关于x=1的对称点即可判断y1与y2的大小关系.【详解】解:二次函数y=-x2+2x+c的对称轴为x=1,∵a=-1<0,∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵-4<<1,∴点A、点B均在对称轴的左侧,∴y1<y2故答案为:<.【点睛】本题主要考查的是二次函数的增减性,注意掌握当a<0时,函数图象从左至右先增加后减小.15、【分析】把点A绕点O顺时针旋转90°得到点A′,看其坐标即可.【详解】解:由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,由图中可以看出,点A′的坐标为(1,3),
故答案为A′(1,3).【点睛】本题考查点的旋转坐标的求法;得到关键点旋转后的位置是解题的关键.16、2【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4,∠AMO=90°,∴在Rt△AMO中OA==5.∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,
则×16π×10=80π.故答案为:80π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18、1【分析】由cosB==可设BC=3x,则AB=5x,根据AB=10,求得x的值,进而得出BC的值即可.【详解】解:如图,
∵Rt△ABC中,cosB==,
∴设BC=3x,则AB=5x=10,∴x=2,BC=1,故答案为:1.【点睛】本题考查了解直角三角形,熟练掌握三角函数的定义及勾股定理是解题的关键.三、解答题(共66分)19、(1)x1=2,x2;(2)x1=1或x2=2.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)提取公因式x后,求出方程的解即可;【详解】解:(1)2x2﹣7x+2=1,(x﹣2)(2x﹣1)=1,∴x﹣2=1或2x﹣1=1,∴x1=2,x2;(2)x2﹣2x=1,x(x﹣2)=1,x1=1或,x2=2.【点睛】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.20、(1)与相切,见解析;(2)【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,进而求出圆心角的度数,再用直角三角形的面积减去扇形DOF的面积即可确定出阴影部分的面积.【详解】解:(1)与相切证明:连接,是的平分线,,,则,,即又过半径的外端点与相切(2)设,则,根据勾股定理得,即解得:,即中,,,扇形,阴扇形阴影部分的面积为.【点睛】本题考查的是圆的相关知识、勾股定理和不规则图形的面积问题,能够充分调动所学知识是解题的关键.21、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、河宽为17米.【解析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.23、(1)见解析;(2)【分析】(1)连接、,分别取、、的中点即可画出△,(2)利用正弦函数的定义可知.由,即可解决问题.【详解】解:(1)连接OA、OC,分别取OA、OB、OC的中点、、,顺次连接、、,△即为所求,如图所示,(2),,,,.,.【点睛】本题考查位似变换、平移变换等知识,锐角三角函数等知识,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.注意:记住锐角三角函数的定义,属于中考常考题型.24、(1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2);(3)存在,满足条件的P点坐标为(﹣3,0)、(﹣,0).【解析】(1)先把代入得到的值,从而确定反比例函数的解析式为;再利用反比例函数解析式确定B点坐标为,然后运用待定系数法确定所求的一次函数的解析式为即可求得.
(3)过A点作轴于,交x轴于,则点的坐标为;再证明利用相似比计算出则,所以点的坐标为,于是得到满足条件的P点坐标.【详解】将代入,得∴反比例函数的解析式为;将代入,得解得将和分别代入得,解得,∴所求的一次函数的解析式为(2)当时,解得:(3)存在.过A点作轴于,交x轴于,如图,点坐标为点的坐标为而即点的坐标为∴满足条件的点坐标为25、(1)A(1,1),B(-3,9);(2)6.【分析】(1)将直线与抛物线联立解方程组,即可求出交点坐标;(2)过点A与点B分别作AA1、BB1垂直于x轴,由图形可得△OAB的面积可用梯形AA1B1B的面积减去△OBB1的面积,再减去△OAA1得到.【详解】(1)∵直线y=-2x+3与抛物线y=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园林绿化工程协议合同
- 保健食品企业会计招聘合同
- 投资借款协议书模板
- 企业领导力发展手册
- 2024房产包销协议
- 酒店物业招投标关键点
- 企业供应商沟通管理准则
- 博物馆消火栓安装工程协议
- 城市桥梁景观照明系统安装合同
- 企业人事管理基本制度
- 纪检委员工作职责
- 2025版国家开放大学法律事务专科《民法学(2)》期末纸质考试总题库
- 江苏省南通市多校2024-2025学年二年级上学期期中数学试卷
- ZHF形势与政策(2024年秋)-考试题库
- 企业地震应急预案管理方案
- 2024中国工商银行借贷合同范本
- 房地产园林绿化行业研究报告:市场规模统计、供需态势及发展前景预测报告(智研咨询)
- 2024年国家危险化学品生产单位安全管理人员考试题库(含答案)
- 水果电池课件教学课件
- 2024春节前安全培训
- 物业管理基础培训
评论
0/150
提交评论