版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列是一元二次方程有()①;②;③;④.A. B. C. D.2.一元二次方程(x+2)(x﹣1)=4的解是()A.x1=0,x2=﹣3B.x1=2,x2=﹣3C.x1=1,x2=2D.x1=﹣1,x2=﹣23.若是一元二次方程,则的值是()A.-1 B.0 C.1 D.±14.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个5.两个相似三角形,其面积比为16:9,则其相似比为()A.16:9 B.4:3 C.9:16 D.3:46.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. B. C. D.7.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.8.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数 B.频数 C.中位数 D.方差9.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1: D.:110.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为()A.2 B.3 C.4 D.6二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点与点关于原点对称,则__________.12.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是_____.13.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.14.如图,⊙O经过A,B,C三点,PA,PB分别与⊙O相切于A,B点,∠P=46°,则∠C=_____.15.关于x的一元二次方程的一个根为1,则方程的另一根为______.16.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.17.已知:如图,在中,于点,为的中点,若,,则的长是_______.18.某同学用描点法y=ax2+bx+c的图象时,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的y值是_______.三、解答题(共66分)19.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?20.(6分)为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)21.(6分)如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标为(﹣1,0),点A坐标为(0,2).一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.(1)求一次函数和反比例函数的关系式;(2)直接写出当x<0时,kx+b﹣<0的解集;(3)在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值.22.(8分)如图,在矩形ABCD中,BD的垂直平分线交AD于E,交BC于F,连接BE、DF.(1)判断四边形BEDF的形状,并说明理由;(2)若AB=8,AD=16,求BE的长.23.(8分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.24.(8分)在平面直角坐标系中,对于点和实数,给出如下定义:当时,以点为圆心,为半径的圆,称为点的倍相关圆.例如,在如图1中,点的1倍相关圆为以点为圆心,2为半径的圆.(1)在点中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________.(2)如图2,若是轴正半轴上的动点,点在第一象限内,且满足,判断直线与点的倍相关圆的位置关系,并证明.(3)如图3,已知点,反比例函数的图象经过点,直线与直线关于轴对称.①若点在直线上,则点的3倍相关圆的半径为________.②点在直线上,点的倍相关圆的半径为,若点在运动过程中,以点为圆心,为半径的圆与反比例函数的图象最多有两个公共点,直接写出的最大值.25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)26.(10分)如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式是一元二次方程.然后对每个方程作出准确的判断.【详解】解:①符合一元二次方程的定义,故正确;②方程二次项系数可能为0,故错误;③整理后不含二次项,故错误;④不是整式,故错误,故选:A.【点睛】本题考查的是一元二次方程的定义,根据定义对每个方程进行分析,然后作出准确的判断.2、B【解析】解决本题可通过代入验证的办法或者解方程.【详解】原方程整理得:x1+x-6=0∴(x+3)(x-1)=0∴x+3=0或x-1=0∴x1=-3,x1=1.故选B.【点睛】本题考查了一元二次方程的解法-因式分解法.把方程整理成一元二次方程的一般形式是解决本题的关键.3、C【分析】根据一元二次方程的概念即可列出等式,求出m的值.【详解】解:若是一元二次方程,则,解得,又∵,∴,故,故答案为C.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.4、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.5、B【分析】根据两个相似多边形的面积比为16:9,面积之比等于相似比的平方.【详解】根据题意得:=.即这两个相似多边形的相似比为4:1.故选:B.【点睛】本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.6、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
过C作CM⊥AB,交AB于点M,如图所示,
由垂径定理可得M为AE的中点,
∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7、B【详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.考点:列表法与树状图法求概率.8、D【分析】要判断成绩的稳定性,一般是通过比较两者的方差实现,据此解答即可.【详解】解:要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的方差.故选:D.【点睛】本题考查了统计量的选择,属于基本题型,熟知方差的意义是解题关键.9、A【解析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度.【详解】水平距离==4,则坡度为:1:4=1:1.故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比.10、C【解析】试题分析:设黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴黄球的个数为1.故选C.考点:概率公式.二、填空题(每小题3分,共24分)11、1【分析】根据在平面直角坐标系中的点关于原点对称的点的坐标为,进而求解.【详解】∵点与点关于原点对称,∴,故答案为:1.【点睛】本题考查平面直角坐标系中关于原点对称点的特征,即两个点关于原点对称时,它们的坐标符号相反.12、【解析】从数﹣2,﹣,1,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,由题意可知正比例函数y=kx的图象经过第三、第一象限,即可得到k=mn>1.由树状图可知符合mn>1的情况共有2种,因此正比例函数y=kx的图象经过第三、第一象限的概率是.故答案为.13、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.【详解】连接BD,过点B作BN⊥AD于点N,∵将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=1,BN=,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案为.【点睛】考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.14、67°【分析】根据切线的性质定理可得到∠OAP=∠OBP=90°,再根据四边形的内角和求出∠AOB,然后根据圆周角定理解答.【详解】解:∵PA,PB分别与⊙O相切于A,B两点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案为:67°.【点睛】本题考查了圆的切线的性质、四边形的内角和和圆周角定理,属于常见题型,熟练掌握上述知识是解题关键.15、-1【详解】设一元二次方程x2+2x+a=0的一个根x1=1,另一根为x2,则,x1+x2=-=-2,解得,x2=-1.故答案为-1.16、【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=.故答案为.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17、【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】解:∵△ABC中,AD⊥BC,∴∠ADC=90°.∵E是AC的中点,DE=5,CD=8,∴AC=2DE=1.∴AD2=AC2−CD2=12−82=2.∴AD=3.故答案为:3.【点睛】本题主要考查了直角三角形的性质,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.18、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,,函数解析式为y=﹣3x2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.三、解答题(共66分)19、(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.20、(1)8,8,;(2)选择小华参赛.(3)变小【分析】(1)根据方差、平均数和中位数的定义求解;
(2)根据方差的意义求解;
(3)根据方差公式求解.【详解】(1)解:小华射击命中的平均数:=8,小华射击命中的方差:,小亮射击命中的中位数:;(2)解:∵小华=小亮,S2小华<S2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.21、(1)y=﹣x﹣,y=﹣;(2)﹣3<x<0;(3)点M的坐标为(﹣2,0),AM+BM的最小值为3.【分析】(1)过点B作BF⊥x轴于点F,由△AOC≌△CFB求得点B的坐标,利用待定系数法可求出一次函数和反比例函数的关系式;(2)当x<0时,求出一次函数值y=kx+b小于反比例函数y=的x的取值范围,结合图形即可直接写出答案.(3)根据轴对称的性质,找到点A关于x的对称点A′,连接BA′,则BA′与x轴的交点即为点M的位置,求出直线BA′的解析式,可得出点M的坐标,根据B、A′的坐标可求出AM+BM的最小值.【详解】解:(1)过点B作BF⊥x轴于点F,∵点C坐标为(﹣1,0),点A坐标为(0,2).∴OA=2,OC=1,∵∠BCA=90°,∴∠BCF+∠ACO=90°,又∵∠CAO+∠ACO=90°,∴∠BCF=∠CAO,在△AOC和△CFB中∴△AOC≌△CFB(AAS),∴FC=OA=2,BF=OC=1,∴点B的坐标为(﹣3,1),将点B的坐标代入反比例函数解析式可得:,解得:k=﹣3,故可得反比例函数解析式为y=﹣;将点B、C的坐标代入一次函数解析式可得:,解得:.故可得一次函数解析式为.(2)结合点B的坐标及图象,可得当x<0时,<0的解集为:﹣3<x<0;(3)作点A关于x轴的对称点A′,连接BA′与x轴的交点即为点M,
∵A(0,2),作点A关于x轴的对称点A′,∴A′(0,﹣2),设直线BA′的解析式为y=ax+b,将点A′及点B的坐标代入可得:解得:,故直线BA′的解析式为y=﹣x﹣2,令y=0,可得﹣x﹣2=0,解得:x=﹣2,故点M的坐标为(﹣2,0),AM+BM=BM+MA′=BA′=.综上可得:点M的坐标为(﹣2,0),AM+BM的最小值为.【点睛】本题考查的是全等三角形判断和性质、待定系数法求一次函数和反比例函数及其性质、根据对称性求最短路线问题.确定一次函数和反比例函数式是解决问题的关键.22、(1)四边形BEDF是菱形,理由见解析;(2)BE的长为10.【分析】(1)如图,由垂直平分线的性质可得,再由等边对等角和平行线的性质得,根据三线合一的性质可知是等腰三角形,且,从而得出四边形BEDF是菱形;(2)设,由题(1)的结论可得DE的长,从而可得AE的长,在中利用勾股定理即可得.【详解】(1)四边形BEDF是菱形,理由如下:是BD的垂直平分线∵四边形ABCD是矩形,即BD是的角平分线是等腰三角形,且∴四边形BEDF是菱形;(2)设,由(1)可得则又∵四边形ABCD是矩形在中,,即,解得所以BE的长为10.【点睛】本题考查了角平分线的性质、等腰三角形的性质、菱形的定义、勾股定理,掌握灵活运用这些性质和定理是解题关键.23、(1);(2)10元;(3)x为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,,故y与x的函数关系式为;(2)根据题意得,,解得:,(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,,,∴当时,w随x的增大而增大,当时,,答:当x为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.24、(1)解:,3(2)解:直线与点的倍相关圆的位置关系是相切.(3)①点的3倍相关圆的半径是3;②的最大值是.【分析】(1)根据点的倍相关圆的定义即可判断出答案;(2)设点的坐标为,求得点的倍相关圆半径为,再比较与点到直线直线的距离即可判断;(3)①先求得直线的解析式,【详解】(1)的1倍相关圆,半径为:,的1倍相关圆,半径为:,不符合,故答案为:,3;(2)解:直线与点的倍相关圆的位置关系是相切,证明:设点的坐标为,过点作于点,∴点的倍相关圆半径为,∴,∵,∴,∴点的倍相关圆半径为,∴直线与点的倍相关圆相切,(3)①∵反比例函数的图象经过点,∴,∴点B的坐标为:,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惯性的课件 教学课件
- 2025年金华义乌市卫生健康系统面向毕业生校园招聘293人笔试备考题库及答案解析
- 维修保养服务合同(2篇)
- 南京工业大学浦江学院《食品科学与工程导论》2021-2022学年第一学期期末试卷
- 【初中化学】能源的合理利用与开发单元复习题-2024-2025学年九年级化学人教版(2024)上册
- 柳州市环境综合治理项目(二期)三江县污水处理厂污水收集系管线改造工程施工组织设计
- 新建府谷煤炭铁路专用线工程三标段王家沟双线大桥实施性施工组织设计
- 南京工业大学浦江学院《界面设计》2021-2022学年第一学期期末试卷
- 《小小的船》说课稿
- 中学语文教学反思2
- Q∕GDW 12176-2021 反窃电监测终端技术规范
- 血管外科试题合集
- 相贯线过渡线画法(课堂PPT)
- 医院传染病质控自查表
- 广告机质量检测报告(共6页)
- 中国 美国 日本水洗标志对比
- 新产品试制流程管理办法
- 通用横版企业报价单模板
- 潜油泵及潜油泵加油机讲义
- 物业服务公司各岗位规范用语
- 医患沟通内容要求记录模板(入院、入院三日、术前、术后、出院)
评论
0/150
提交评论