版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/11/12018年四川省眉山市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)(3.00分)(2018・眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个(3.00分)(2018・眉山)据相关报道,开展精准扶贫工作以来,我国约有65000000人摆脱贫困,将65000000用科学记数法表示为65X106B.0.65X108C.6.5X106D.6.5X107(3.00分)(2018・眉山)下列计算正确的是()A.(x+y)2=x2+y2B.(-丄xy2)3=-1x3y6264.(3.00分)(2018・眉山)下列立体图形中,主视图是三角形的是置,使含30°角的三角板的一条直角边和含45°角的三角板的一条A.45°B.60°C.75°D.85°(3.00分)(2018・眉山)如图所示,AB是00的直径,PA切00于点A,线段P0交00于点C,连结BC,若ZP=36°,则ZB等于()A.27°B.32°C.36°D.54°(3.00分)(2018・眉山)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()A.众数B.中位数C.平均数D.方差(3.00分)(2018・眉山)若a,B是一元二次方程3x2+2x-9=0TOC\o"1-5"\h\z的两根,贝U叵+2的值是()a3A.B.-2C.-显D..27272727(3.00分)(2018・眉山)下列命题为真命题的是()两条直线被一组平行线所截,所得的对应线段成比例相似三角形面积之比等于相似比对角线互相垂直的四边形是菱形顺次连结矩形各边的中点所得的四边形是正方形(3.00分)(2018・眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%(3.00分)(2018・眉山)已知关于x的不等式组仅[2x>3(k-2)+5有三个整数解,则a的取值范围是()A.丄WaV1B.丄WaW1C.丄VaW1D.aV1222(3.00分)(2018・眉山)如图,在ABCD中,CD=2AD,BE丄AD于点E,F为DC的中点,连结EF、BF,下列结论:①ZABC=2ZABF;②EF二BF;③S=2S‘④ZCFE=3ZDEF,其中正确结论的个数四边形DEBC△EFB共有()DFCABA.1个B.2个C.3个D.4个二、填空题:本大题共6个小题,每小题3分,共18分请将正确答案直接填在答题卡相应的位置上(3.00分)(2018・眉山)分解因式:X3-9x=.(3.00分)(2018・眉山)已知点A(x,y)、B(x,y)在直线1122y=kx+b上,且直线经过第一、二、四象限,当xVx时,y及y的大1212小关系为.(3.00分)(2018・眉山)已知关于x的分式方不^^-2二有一个正数解,则k的取值范围为.(3.00分)(2018・眉山)如图,AABC是等腰直角三角形,ZACB=90°,AC=BC=2,把厶ABC绕点A按顺时针方向旋转45。后得到△AB'C',则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(3.00分)(2018・眉山)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点0,则tanZAOD二acD(3.00分)(2018・眉山)如图,菱形0ABC的一边0A在x轴的负半轴上,0是坐标原点,A点坐标为(-10,0),对角线AC和0B相交于点D且AC・OB=160.若反比例函数y土(xV0)的图象经过点D,并及BC的延长线交于点E,则S:S=△OCE△OAB三、解答题:本大题共6个小题,共46分请把解答过程写在答题卡相应的位置上(6.00分)(2018・眉山)计算:(n-2)0+4cos30°-衍-(-I)-2.__9(6.00分)(2018・眉山)先化简,再求值:(竺L-理)F二J,丈s+1其中x满足x2-2x-2=0.21.(8.00分)(2018・眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:作出△ABC向左平移4个单位长度后得到的△ABC,并写出点111C的坐标;1作出△ABC关于原点0对称的△ABC,并写出点C的坐标;2222已知△ABC关于直线l对称的△ABC的顶点A的坐标为(-4,3333-2),请直接写出直线l的函数解析式.备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37。方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°~J_,cos53°心旦,55位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.某班参加球类活动人数统计表项目篮球足球排球羽毛球乒乓球人数m6864请根据图表中提供的信息,解答下列问题:(1)图表中m二,n二;(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为人;(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率.(9.00分)(2018・眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y及x满足如下关系:hoK+80(6<s<20)(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p及x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w及x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润二出厂价-成本)四、解答题:本大题共2个小题,共20分请把解答过程写在答题卡相应的位置上(9.00分)(2018・眉山)如图①,在四边形ABCD中,AC丄BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB二MN.(1)求证:BN平分ZABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:AMyNsABDC.D.DN2AB图①圏②BDC.D.DN2AB图①圏②(11.00分)(2018・眉山)如图①,已知抛物线y二ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC〃x轴交抛物线于点C,ZAOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线0E下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使厶POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.<咏1图①图②2018年四川省眉山市中考数学试卷
参考答案及试题解析一、选择题(共12小题,每小题3分,满分36分)(3.00分)(2018・眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,-1共2个.故选:C.【点评】此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.(3.00分)(2018・眉山)据相关报道,开展精准扶贫工作以来,我国约有65000000人摆脱贫困,将65000000用科学记数法表示为()65X106B.0.65X108C.6.5X106D.6.5X107【分析】科学记数法的表示形式为aX10n的形式,其中1W|a|V10,n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值及小数点移动的位数相同.当原数绝对值21时,n是非负数;当原数的绝对值V1时,n是负数.【解答】解:65000000=6.5X107,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为aX10n的形式,其中1W|a|V10,n为整数,表示时关键要正确确定a的值以及n的值.(3.00分)(2018・眉山)下列计算正确的是()A.(x+y)2=x2+y2B.(-丄xy2)3=-1x3y626分析】根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.【解答】解:(x+y)2=x2+2xy+y2,A错误;(-丄xy2)3=-A^3y6,B错误;2SX6^X3=X3,C错误;:(_2)2=[:4=2,D正确;故选:D.【点评】本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.4.(3.00分)(2018・眉山)下列立体图形中,主视图是三角形的是【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.【点评】本题考查了简单几何体的三视图,圆锥的主视图是三角形(3.00分)(2018・眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条【分析】先根据三角形的内角和得出ZCGF=ZDGB=45°,再利用Za二ZD+ZDGB可得答案.【解答】解:如图,•・・ZACD=90°、ZF=45°,.\ZCGF=ZDGB=45°,则Za=ZD+ZDGB=30°+45°=75°,故选:c.【点评】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.(3.00分)(2018・眉山)如图所示,AB是00的直径,PA切00于点A,线段P0交00于点C,连结BC,若ZP=36°,则ZB等于()A.27°B.32°c.36°D.54°【分析】直接利用切线的性质得出ZOAP=90°,再利用三角形内角和定理得出ZA0P=54°,结合圆周角定理得出答案.【解答】解:TPA切00于点A,・・・ZOAP=90°,VZP=36°,・・・ZA0P=54°,・・・ZB=27°.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确得出ZA0P的度数是解题关键.(3.00分)(2018・眉山)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的()A.众数B.中位数C.平均数D.方差【分析】由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.【解答】解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点评】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数(3.00分)(2018・眉山)若a,B是一元二次方程3x2+2x-9=0的两根,贝U叵+2的值是()a3A.土B.-土C.-显D.韭27272727【分析】根据根及系数的关系可得出a+B=-£、aB=-3,将其代3入叵+殳二中即可求出结论.a3ap【解答】解:•.•a、B是一兀二次方程3x2+2x-9=0的两根,.•.a+B=-£,aB=-3,3.・.豆+2二,二,二=)O二一翌...艺oO4W故选:C.【点评】本题考查了根及系数的关系,牢记两根之和等于-b、两根之积等于2是解题的关键.a(3.00分)(2018・眉山)下列命题为真命题的是()两条直线被一组平行线所截,所得的对应线段成比例相似三角形面积之比等于相似比对角线互相垂直的四边形是菱形顺次连结矩形各边的中点所得的四边形是正方形【分析】根据平行线分线段成比例定理、相似三角形的性质、菱形的判定定理、中点四边形的性质判断即可.【解答】解:两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;相似三角形面积之比等于相似比的平方,B是假命题;对角线互相垂直的平行四边形是菱形,C是假命题;顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3.00分)(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%【分析】设平均每次下调的百分率为X,则两次降价后的价格为6000(1-X)2,根据降低率问题的数量关系建立方程求出其解即可.【解答】解:设平均每次下调的百分率为x,由题意,得6000(1-X)2=4860,解得:x=0.1,x=1.9(舍去).12答:平均每次下调的百分率为10%.故选:C.【点评】本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.(3.00分)(2018・眉山)已知关于x的不等式组’仅[2x>3(1-25+5有三个整数解,则a的取值范围是()A.LWaVlB.LWaWlC.LVaWlD.aV1222【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:由x〉2a-3,由2x〉3(x-2)+5,解得:2a-3VxW1,由关于x的不等式组’仅有三个整数:解得-2W2a-3V-1,解得丄WaV1,2故选:A.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.(3.00分)(2018・眉山)如图,在ABCD中,CD=2AD,BE丄AD于点E,F为DC的中点,连结EF、BF,下列结论:①ZABC=2ZABF;②EF二BF;③S=2S‘④ZCFE=3ZDEF,其中正确结论的个数四边形DEBC△EFB共有()A.1个B.2个C.3个D.4个【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE丄BG,四边形BCFH是菱形即可解决问题;【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.VCD=2AD,DF=FC,・・・CF二CB,.\ZCFB=ZCBF,•・・CD〃AB,・ZCFB=ZFBH,.ZCBF=ZFBH,・ZABC=2ZABF.故①正确,•DE〃CG,ZD=ZFCG,*DF=FC,ZDFE=ZCFG,△DFE^AFCG,FE=FG,•BE丄AD,・ZAEB=90°,•AD〃BC,.ZAEB=ZEBG=90°,.BF=EF=FG,故②正确,S=S,△DFE△CFGS=S=2S,故③正确四边形DEBC△EBG△BEFAH=HB,DF=CF,AB=CD,・CF二BH,・.・CF〃BH,•四边形BCFH是平行四边形,CF=BC,•四边形BCFH是菱形,.ZBFC=ZBFH,•FE二FB,FH〃AD,BE丄AD,・・・FH丄BE,.\ZBFH=ZEFH=ZDEF,・・・ZEFC=3ZDEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共6个小题,每小题3分,共18分请将正确答案直接填在答题卡相应的位置上(3.00分)(2018・眉山)分解因式:X3-9x二x(x+3)(x-3).【分析】根据提取公因式、平方差公式,可分解因式.【解答】解:原式二x(x2-9)=x(x+3)(x-3),故答案为:x(x+3)(x-3).【点评】本题考查了因式分解,利用了提公因式法及平方差公式,注意分解要彻底.(3.00分)(2018・眉山)已知点A(x,y)、B(x,y)在直线1122y=kx+b上,且直线经过第一、二、四象限,当xVx时,y及y的大1212小关系为〉.【分析】直接利用一次函数的性质分析得出答案.【解答】解:・・•直线经过第一、二、四象限,・・・y随x的增大而减小,•xVx,12Ay及y的大小关系为:y>y.1212故答案为:>.【点评】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.(3.00分)(2018・眉山)已知关于x的分式方程亠-2二有一x-3k-3个正数解,则k的取值范围为kV6且kH3.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【解答】解;亠-2二丄,方程两边都乘以(x-3),得x=2(x-3)+k,解得x=6-k#3,关于x的方程程亠-2=有一个正数解,・x=6-k>0,kV6,且k#3,Ak的取值范围是kV6且k#3.故答案为:kV6且kH3.【点评】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.(3.00分)(2018・眉山)如图,AABC是等腰直角三角形,ZACB=90°,AC=BC=2,把厶ABC绕点A按顺时针方向旋转45。后得到△AB'C',则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是一昇【分析】先根据等腰直角三角形的性质得到ZBAC=45°AB=迈AC=2卫,再根据旋转的性质得ZBAB,=ZCAC,=45°,则点B'、C、A共线,然后根据扇形门口计算,利用线段BC在上述旋转过程中所扫过部分(阴影部分)的面积二S-S进行计算即扇形BAB'扇形CAC'可.【解答】解:•••△ABC是等腰直角三角形,・・・ZBAC=45°,AB二•迈AC=2‘迈,•△ABC绕点A按顺时针方向旋转45°后得到△AB'C,・ZBAB'=ZCAC'=45°,・点B'、C、A共线,・•・线段BC在上述旋转过程中所扫过部分(阴影部分)的面积二S扇形+S-S-SBAB'△AB'C扇形CAC'△ABC=S-S扇形BAB'扇形CAC'二45•兀,力2-360360二丄n.故答案为丄n.2【点评】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等腰直角三角形的性质和旋转的性质.(3.00分)(2018・眉山)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点0,则tanZAOD二2.月c【分析】首先连接BE,由题意易得BF二CF,^AC0s^BK0,然后由相似三角形的对应边成比例,易得KO:C0=1:3,即可得OF:CF=OF:BF=1:2,在RtAOBF中,即可求得tanZBOF的值,继而求得答案.【解答】解:如图,连接BE,・・•四边形BCEK是正方形,・・・KF二CF二丄CK,BF二丄BE,CK=BE,BE丄CK,22・BF=CF,根据题意得:AC〃BK,•••△ACOs^BKO,・・・KO:CO=BK:AC=1:3,•KO:KF=1:2,・・・KO=OF二丄CF二丄BF,22在RtAPBF中,tanZBOF二旦1=2,OFVZAOD=ZBOF,•tanZAOD=2.故答案为:2【点评】此题考查了相似三角形的判定及性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想及数形结合思想的应用.(3.00分)(2018・眉山)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC・OB=160.若反比例函数y土(xV0)的图象经过点D,并及BC的延长线交于点E,则S:S=1:5.△OCE△OAB【分析】△OAB及厶OCE等高,若要求两者间的面积比只需求出底边的比,由AO=10知需求CE的长,即求点E的坐标,需先求反比例函数解析式,而反比例函数解析式可先根据菱形的面积求得点D的坐标,据此求解可得.【解答】解:作CG丄AO于点G,作BH丄x轴于点H,•・・AC・OB=160,・・・S二丄・AC・OB=80,菱形OABC・・・S二丄S=40,即1AO・CG=40,△OAC菱形OABC•A(-10,0),即OA=10,・CG=8,在RtAOGE中,・.・OC=OA=10,・OG=6,则C(-6,8),VABAH^ACOG,・BH=CG=8、AH=OG=6,・B(-16,8),•D为BO的中点,・D(-8,4),•D在反比例函数图象上,・・・k二-8X4=-32,即反比例函数解析式为y二-丝,当y=8时,x=-4,则点E(-4,8),・CE=2,VS二丄・CE・CG二丄X2X8=8,S二丄・AO・BH二丄X10X8=40,△OCEAAOB・・・S:S=1:5△OCE△OAB故答案为:1:5.【点评】本题主要考查反比例函数系数k的几何意义,解题的关键是根据菱形的性质求得其对角线交点D的坐标及待定系数法求反比例函数解析式.三、解答题:本大题共6个小题,共46分请把解答过程写在答题卡相应的位置上(6.00分)(2018・眉山)计算:(n-2)o+4cos30°--(-1)-2.【分析】先计算零指数幕、代入三角函数值、化简二次根式,计算负整数指数幂,再计算乘法和加减运算可得.【解答】解:原式=1+4X.-2^-42=1+2.込-2^-4=-3.【点评】本题主要考查实数的混合运算,解题的关键是掌握零指数幕、三角函数值、二次根式的化简及负整数指数幕.__9(6.00分)(2018・眉山)先化简,再求值:(4-二)十二J,x工+1/十2廿1其中x满足x2-2x-2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得X2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[r]三赵玄xCx-Hl)(工十1),=.•xts+1)x【2工-1)=,*.*X2-2x-2=0,.•・X2=2x+2=2(x+1),则原式二=L.2(k+1)2【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混(8.00分)(2018・眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:作出△ABC向左平移4个单位长度后得到的△ABC,并写出点111C的坐标;1作出△ABC关于原点0对称的△ABC,并写出点C的坐标;2222已知△ABC关于直线l对称的△ABC的顶点A的坐标为(-4,3333-2),请直接写出直线l的函数解析式.
A、B、C的坐标,然后描点得到厶ABC;111111(2)根据关于原点中心对称的点的坐标特征写出点A、B、C的坐标,222然后描点即可;(3)根据对称的特点解答即可.【解答】解:(1)如图,AABC为所作,C(-1,2);1111(2)如图,AABC为所作,C(-3,-2);2222(3)因为A的坐标为(2,4),A的坐标为(-4,-2),3所以直线l的函数解析式为y=-x,【点评】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.(8.00分)(2018・眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37。方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°~2,cos53°~3,55tan53°aJ_)3【分析】作BD丄AC,设AD=x,在RtAABD中求得BD=.px,在RtABCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,3最后由BC=可得答案.cosZ^DBC【解答】解:如图,作BD丄AC于点D,则ZBAD=60°、ZDBC=53°,设AD=x,在RtAABD中,BD=ADtanZBAD二:亏x,在RtABCD中,CD=BDtanZDBC二七xX空二聖lx,33由AC=AD+CD可得x+°:3x=13,3解得:x=4七-3,则BC==二邑3x二邑亘X(4七-3)=20-5七,cosZDBC33'5即BC两地的距离为(20-5七)千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.(9.00分)(2018・眉山)为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的不完整统计表和扇形统计图.某班参加球类活动人数统计表项目篮球足球排球羽毛球乒乓球人数m6864请根据图表中提供的信息,解答下列问题:(1)图表中m二16,n=20;(2)若该校学生共有1000人,则该校参加羽毛球活动的人数约为150人;(3)该班参加乒乓球活动的4位同学中,有3位男同学(分别用A,B,C表示)和1位女同学(用D表示),现准备从中选出两名同学参加双打比赛,用树状图或列表法求出恰好选出一男一女的概率某班藝加球类话动心情况扇形统计图【分析】(1)根据足球的人数和百分比,求出总人数即可解决问题(2)利用样本估计总体的思想即可解决问题;(3)画出树状图,根据概率公式即可求解.【解答】解:(1)总人数二丘=40(人),15%m=40-6-8-6-4=16(人),n%旦=20%,40n=20,故答案为16,20;(2)1000XJL=150(人).40故答案为150.图如图所示:cDC£3CDAB图如图所示:cDC£3CDABDCD开婚共有12种可能,一男一女有6种可能,则P(恰好选到一男一女)二旦二丄.122【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(9.00分)(2018・眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y及x满足如下关系:y=§hoS-F80(6<x<20)(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p及x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w及x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润二出厂价-成本)'1-020xC天)【分析】(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p及x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W及x的关系式,再根据一次函数的增减性和二次函数的增减性解答;【解答】解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0WxV10时,p=2;当10WxW20时,设P=kx+b,把点(10,2),(20,3)代入得,A0Hb=2,120k+b=3.*.p=0.1x+1,0WxW6时,w=(4-2)X34x=68x,当x=6时,w=408(元);最大6VxW10时,w=(4-2)X(20x+80)=40x+160,・・・x是整数,・••当x=10时,w=560(元);最大10VxW20时,w=(4-0.1x-1)X(20x+80)=-2x2+52x+240,Va=-3V0,・••当x=—=13时,w=578(元);最大综上,当x=13时,w有最大值,最大值为578.川冠只)°1-02d瓦〔天)【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.四、解答题:本大题共2个小题,共20分请把解答过程写在答题卡相应的位置上(9.00分)(2018・眉山)如图①,在四边形ABCD中,AC丄BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB二MN.求证:BN平分ZABE;若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;如图②,若点F为AB的中点,连结FN、FM,求证:AMyNsABDC.DN2A图①EX\DN2A图①EX\【分析】(1)由AB二AC知ZABC二ZACB,由等腰三角形三线合一知AM丄BC,从而根据ZMAB+ZABC=ZEBC+ZACB知ZMAB=ZEBC,再由△MBN为等腰直角三角形知ZEBC+ZNBE二ZMAB+ZABN=ZMNB=45°可得证;设BM=CM=MN=a,知DN=BC=2a,证△ABN^ADBN得AN二DN=2a,RtAABM中利用勾股定理可得a的值,从而得出答案;F是AB的中点知MF二AF二BF及ZFMN=ZMAB=ZCBD,再由巫二陋二丄ABBC2即可得证.【解答】解:(1)VAB=AC,・・・ZABC二ZA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不锈钢的基础知识王文华
- (2024)柑桔果渣综合利用建设项目可行性研究报告(一)
- 2022-2023学年天津市河北区高二(上)期末语文试卷
- 2023年高收缩腈纶项目融资计划书
- 烹饪原料知识习题库(含参考答案)
- 《养生与防治》课件
- 养老院老人生活照料标准制度
- 养老院老人健康饮食营养师表彰制度
- 人教版教学课件免疫调节(上课)
- 《石油和油品》课件
- 颈椎病公休会
- 部编小学语文单元作业设计五年级上册第三单元 3
- 生物化学习题(老师重点)及生物化学题库及答案
- 《商务数据分析》教学课件:1.1 数据分析认知
- 《精准医学》课件
- 《肿瘤基础知识》课件
- 非标自动化设备设计方案
- 2023年中考英语1600词汇中考单词
- 资治通鉴少年简读版
- 医院总务科的工作总结
- 2024年湖南高速铁路职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
评论
0/150
提交评论