北航理论力学课堂教学课件-静力学_第1页
北航理论力学课堂教学课件-静力学_第2页
北航理论力学课堂教学课件-静力学_第3页
北航理论力学课堂教学课件-静力学_第4页
北航理论力学课堂教学课件-静力学_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2一、力对轴之矩的计算xyzabcFolABCD例:

Ml

(F)a2解:l

b2

c2ai

bj

ckMl

(F)

(OB

F)

l

(CB

F)

labcF(a2

b2

c2

)(b2

c2

)b2

c2F

F

(bj

ck)二、静定与静不定问题3静定问题:未知量的数目=独立平衡方程的数目静不定问题:未知量的数目>独立平衡方程的数目结论:刚体系统的独立平衡方程个数为:将刚体系统分解成单个刚体后得到的独立平衡方程个数之和。例:ABCDEHGO设构件之间通过销钉相互作用4CDEHGO设构件之间通过销钉相互作用5问题:平面桁架 ,该桁架是否静定结构?能否求出杆件3的内力?6xyoo

M

(F

)

0

Fy

0

Fx

0—矩式BA

M

(F

)

0M

(F

)

0

Fx

0A、B连线与ox轴不垂直二矩式C

M

(F

)

0

MB

(F

)

0

M

A

(F

)

0A、B、C三点不共线三矩式7三、平衡方程的独立性平面任意系平衡方程二矩式的{F1,

F2

,,

Fn}

{FR

,

MA}

0

FR

cos

0Fx平面任意力系简化FRMAABxo

A点F过R

M

A

(F)

0

MB

(F)

0

AB线F沿R平衡方程的独立性8平面任意系平衡方程三矩式的{F1,

F2

,,

Fn}

{FR

,

MA}平面任意力系简化FRMAABxo

M

A

(F)

0

A点F过RB

M

(F)

0R

F沿AB线二、平衡方程的独立性MC

0

FR

09xyzFoABCDA'B

'C

'110FFinF例:

设刚体上作用有力系

{F1,...,

Fn

}

,

判断下列平衡方程组的独立性.zBB

'x

0

0

Mx

0

M

y

0

M

MCC

'

0

M

F

0xyzFoABCDA'B

'C

'1FFiFnxzBB

'x

0

0

M

0

M

y

0

M

MCC

'

0

M

F

0xz

0

0

M

M

y

0

M力系{F1,...,Fn

}可简化成过o点的合力FR

FR

通过CC’

,

或FR

||

CC’MCC

'

0M

BB

'

0||CC’||BB’FR

Fx

0方程组不11

独立例:重为W

的均质正方形板水平支承在铅垂墙壁上,求绳1、2的拉力,BC杆的内力和球铰链A的约束力。解:一、取板为研究对象二、受力分析三、平衡方程ABWC2xyz1CW112FF2FCAxFxyBzFAzA

FAyCW1FF2FCAxFxyBzFAzA

FAy方法一:基本方程13

FC

cos

(F1

F2

)

cos

0

Fx

0

:

FAx

FC

sin

0W

(F1

F2

)sin

0

Fy

0

:

FAy

Fz

0

:

FAzx

2M

0

:

W

a

F

sin

2a

0M

y

0

:

W

a

(F1

F2

)sin

2a

0Mz

0

:

F2

cos

2a

FC

cos

2a

FC

sin

2a

0CWF1F2FCAxFxyBzFAzA

FAy方法二:四矩式方程M

AC

0

:

F1

014DDC

Az

2a

0M

0

:

W

a

FMx

0

:

W

a

F2

sin

2a

0Mz

0

:

F2

cos

2a

FC

cos

2a

FC

sin

2a

0

Fy

0

:

FAy

FC

sin

0

Fx

0

:

FAx

FC

cos

(F1

F2

)

cos

0x

DCM

AC

(F)

0M

(F)

0M

(F)

01

nR

力系{F

,...,F

}可简化成oxy面上的合力F所以平衡条件

M

y

(F)

0

Fz

0

自然满足.故后三个平衡方程取CW115FF2CFAxFxyBzFAzA

FAyDy

Fx

0

F

0Mz

(F

)

0M

AC

0

:

F1

016M

DC

0

:

W

a

FAz

2a

0Mx

0

:

W

a

F2

sin

2a

0

Fz

0

:

FAz

W

(F1

F2

)sin

0M

y

0

:

W

a

(F1

F2

)sin

2a

0(1)(2)(3)(4)(5)(1)

2a

sin

(2)

(3)

(4)(1)

2a

sin

(3)

(5)关于刚体系平衡方程独立性的命题:

如果:对系统A列满了一组独立平衡方程;对系统B列满了一组独立平衡方程;则对A+B组成的系统,

不可能再列出独立的平衡方程.AB1718FAi

ABA

FABFAi

BjF

BBjF

FAB

yAiy

Bjyoo

Ai

o

BjF

0

:F

F

0

Fx

0

:

FAix

FBjx

0

M

0

:

M

(F

)

M

(F

)

0oo

Ai

o

AB

Fx

0

:

FAix

FABx

0

Fy

0

:

FAiy

FABy

0M

0

:

M

(F

)

M

(F

)

0yBjy

AByoo

Bj

o

ABF

0

:F

F

0

Fx

0

:

FBjx

FABx

0

M

0

:

M

(F

)

M

(F

)

0例题:求1、2杆的内力。方法一:节点法。ABCEDGP1515aa1152方法二:截面法。19题3-12:求杆AC的内力。解:一、整体受力分析平衡方程:

Fx

0

:

NCx

0MC

(F

)

0

:

ND

b

F

x

0Db

N

x

F

Fy

0

:

NCy

ND

F

0Cyb

N

b

x

FCxNCyNDN2021二、AB杆受力分析xBFFAxFFAy平衡方程:MA

(F

)

0

:

FB

b

F

x

0Bb

F

x

F三、BC杆受力分析BF

'FEyFExFACNCx

F

b

N

b

F

b

0B

2

Cy

2

AC

2NCy平衡方程:ME

(F

)

0

:

FAC

FB

NCy

F22例:

设滚子半径为R,

自重不计,

重物与板共重P,

滚子与板间的滚阻系数为

2

,

滚子与地面间的滚阻系数为

1

.求拉动系统所需的TminTPBA解:TPM

A1A1NA1F一、研究板,受力分析平衡方程:

Fx

0

:

T

FA1

FB1

0

Fy

0

:

NA1

NB1

P

0M

B1B1NFB1BAA1F

'N

'A1A1M

'FA2B

2MNB223B

2FB1M

'B1F

'B1N

'二、分别研究滚子A和B,

受力分析平衡方程:

对滚子AEM

A2DNA2

FA1

2R

0MD

(F)

0

:

MA1

MA2

Fy

0

:

NA2

NA1

0

FB1

2R

0平衡方程:

对滚子BME

(F)

0

:

MB1

MB

2

Fy

0

:

NB

2

NB1

024

Fx

0

:

T

FA1

FB1

0

Fy

0

:

NA1

NB1

P

0

FA1

2R

0

FB1

2R

0MD

(F)

0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论