版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级下册17.2勾股定理的逆定理(1)八年级下册17.2勾股定理的逆定理(1)1本课在学习勾股定理的基础上,研究当三角形中两边的平方和等于第三边的平方时,这个三角形是否为直角三角形.在研究过程中,介绍了逆命题、逆定理的概念.课件说明本课在学习勾股定理的基础上,研究当三角形中两课件说明2学习目标:1.理解勾股定理的逆定理,经历“观察-测量-猜想-论证”的定理探究的过程,体会“构造法”证明数学命题的基本思想;2.了解逆命题的概念,知道原命题为真命题,它的逆命题不一定为真命题.学习重点:探索并证明勾股定理的逆定理.课件说明学习目标:课件说明3勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.题设(条件):直角三角形的两直角边长为a,b,斜边长为c.结论:a2+b2=c2.问题1回忆勾股定理的内容.形数回忆旧知再次梳理勾股定理如果直角三角形的两条直角边长分别为题设(条4逆向思考提出问题思考如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是否是直角三角形?逆向思考提出问题思考如果三角形的三边长a,5逆向思考提出问题据说,古埃及人曾用下面的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距,4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.你认为结论正确吗?(1)(2)(3)(4)(5)(6)(7)(8)(13)(12)(11)(10)(9)如果三角形的三边分别为3,4,5,这些数满足关系:32+42=52,围成的三角形是直角三角形.逆向思考提出问题据说,古埃及人曾用下面的方法画6实验操作:(1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数为边长画出三角形(单位:cm),它们是直角三角形吗?①2.5,6,6.5;②6,8,10.(2)量一量:用量角器分别测量上述各三角形的最大角的度数.(3)想一想:请判断这些三角形的形状,并提出猜想.精确验证提出猜想实验操作:精确验证提出猜想7A1
B1
C1
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.求证:△ABC是直角三角形.?三角形全等逻辑推理证明结论∠C是直角
△ABC是直角三角形
A
B
C
abcaA1B1C1已知:如图,△ABC的三边长a,8作用:判定一个三角形三边满足什么条件时为直角三角形.演绎推理形成定理定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.作用:判定一个三角形三边满足什么条件时为直角三角形.9解:(1)∵152+82=225+64=289,172=289,∴152+82=172.∴以15,8,17为边长的三角形是直角三角形.例1判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=17,c=8;(2)a=13,b=15,c=14;(3)a=,b=4,c=5.直接运用巩固知识像15,17,8这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.解:(1)∵152+82=225+64=289,∴10勾股定理的逆定理:定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.阶段小结适时梳理勾股定理的逆命题:勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.勾股定理的逆定理:定理:如果三角形的三边长a,b,c满11直接运用巩固知识说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等;逆命题:内错角相等,两直线平行.真命题.(2)对顶角相等;逆命题:相等的角是对顶角.假命题.(3)线段垂直平分线上的点到线段两端点的距离相等.逆命题:到线段两端点的距离相等的点在线段的垂直平分线上.真命题.任何一个命题都有逆命题;原命题是真命题,其逆命题不一定是真命题.直接运用巩固知识说出下列命题的逆命题.这些命题的逆命12(1)勾股定理的逆定理的内容是什么?它有什么作用?(2)本节课我们学习了原命题,逆命题等知识,你能说出它们之间的关系吗?(3)在探究勾股定理的逆定理的过程中,我们经历了哪些过程?课堂小结(1)勾股定理的逆定理的内容是什么?它有什么作课堂小结13作业:教科书第33页练习第1,2题.课后作业作业:教科书第33页练习第1,2题.课后作业14八年级下册17.2勾股定理的逆定理(1)八年级下册17.2勾股定理的逆定理(1)15本课在学习勾股定理的基础上,研究当三角形中两边的平方和等于第三边的平方时,这个三角形是否为直角三角形.在研究过程中,介绍了逆命题、逆定理的概念.课件说明本课在学习勾股定理的基础上,研究当三角形中两课件说明16学习目标:1.理解勾股定理的逆定理,经历“观察-测量-猜想-论证”的定理探究的过程,体会“构造法”证明数学命题的基本思想;2.了解逆命题的概念,知道原命题为真命题,它的逆命题不一定为真命题.学习重点:探索并证明勾股定理的逆定理.课件说明学习目标:课件说明17勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.题设(条件):直角三角形的两直角边长为a,b,斜边长为c.结论:a2+b2=c2.问题1回忆勾股定理的内容.形数回忆旧知再次梳理勾股定理如果直角三角形的两条直角边长分别为题设(条18逆向思考提出问题思考如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是否是直角三角形?逆向思考提出问题思考如果三角形的三边长a,19逆向思考提出问题据说,古埃及人曾用下面的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距,4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.你认为结论正确吗?(1)(2)(3)(4)(5)(6)(7)(8)(13)(12)(11)(10)(9)如果三角形的三边分别为3,4,5,这些数满足关系:32+42=52,围成的三角形是直角三角形.逆向思考提出问题据说,古埃及人曾用下面的方法画20实验操作:(1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数为边长画出三角形(单位:cm),它们是直角三角形吗?①2.5,6,6.5;②6,8,10.(2)量一量:用量角器分别测量上述各三角形的最大角的度数.(3)想一想:请判断这些三角形的形状,并提出猜想.精确验证提出猜想实验操作:精确验证提出猜想21A1
B1
C1
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.求证:△ABC是直角三角形.?三角形全等逻辑推理证明结论∠C是直角
△ABC是直角三角形
A
B
C
abcaA1B1C1已知:如图,△ABC的三边长a,22作用:判定一个三角形三边满足什么条件时为直角三角形.演绎推理形成定理定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.作用:判定一个三角形三边满足什么条件时为直角三角形.23解:(1)∵152+82=225+64=289,172=289,∴152+82=172.∴以15,8,17为边长的三角形是直角三角形.例1判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=17,c=8;(2)a=13,b=15,c=14;(3)a=,b=4,c=5.直接运用巩固知识像15,17,8这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.解:(1)∵152+82=225+64=289,∴24勾股定理的逆定理:定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.阶段小结适时梳理勾股定理的逆命题:勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.勾股定理的逆定理:定理:如果三角形的三边长a,b,c满25直接运用巩固知识说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等;逆命题:内错角相等,两直线平行.真命题.(2)对顶角相等;逆命题:相等的角是对顶角.假命题.(3)线段垂直平分线上的点到线段两端点的距离相等.逆命题:到线段两端点的距离相等的点在线段的垂直平分线上.真命题.任何一个命题都有逆命题;原命题是真命题,其逆命题不一定是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年新教材高中物理 第5章 传感器 1 认识传感器(1)教学实录 新人教版选择性必修第二册
- 工作计划怎么写15篇
- 2023七年级道德与法治上册 第三单元 师长情谊第六课 师生之间 第1框 走近老师教学实录 新人教版
- 高校教师讲课心得7篇
- 学生会年终述职报告(集合15篇)
- 销售人员个人述职报告(8篇)
- 维修施工方案(范文)
- 个人留学申请书
- 社会心理学-群体心理效应
- 上市公司资产置换案例4篇
- 输配电系统的新能源接入与电价测算
- 反洗钱述职报告
- 飞机电气系统电子绪论课件
- 泌尿护士述职报告
- 部编版二年级语文上册第二单元大单元教学设计
- 胃癌健康宣教讲解课件
- 建筑工程类就业分析报告
- 运动营养学(第三版) 第7章 运动营养食品与功能性食品
- 正大天虹方矩管镀锌方矩管材质书
- 妊娠剧吐伴酮症护理查房课件
- 医疗碳中和方案
评论
0/150
提交评论