概率与统计的交汇的五种题型_第1页
概率与统计的交汇的五种题型_第2页
概率与统计的交汇的五种题型_第3页
概率与统计的交汇的五种题型_第4页
概率与统计的交汇的五种题型_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

概率与统计的交汇的五种题型统计和古典概型的综合是高考解答题的一个命题趋势和热点,此类题一般在实际生活背景中结合统计与概率的相关知识,考查学生的综合解题能力,在解决综合问题时,要求同学们对图表进行观察、分析、提炼,挖掘出图表所给予的有用信息,排除有关数据的干扰,进而抓住问题的实质,达到求解的目的.题型一、随机抽样与概率交汇例1.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁401858大于40岁152742总计5545100(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.【解析】(1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×=3,所以大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10个,设恰有一名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),所以【点评】本题将统计抽样与概率综合在一起,掌握抽样方法的特点以及古典概率事件空间的列举是解题的关键,利用分层抽样的定义以及各层抽样比是解决分层抽样的重要手段.通过列举法列举出所有事件发生的可能性的种数,寻找出问题中所要求的事件的可能性的种数即可求解出所求概率,列举法又称枚举法,它是解决随机事件的重要方法.【变式训练1】(1)假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:9328124585696834312573930275564887301135据此估计,该运动员两次掷镖恰有一次正中靶心的概率为()A.0.50 B.0.45C.0.40 D.0.35【解析】两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一,它们分别是93,28,45,25,73,93,02,48,30,35,共10个,因此所求的概率为=0.50.故选A.(2)某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:组号分组频数频率第1组[50,60)50.05第2组[60,70)a0.35第3组[70,80)30b第4组[80,90)200.20第5组[90,100]100.10合计1001.00(1)求a,b的值;(2)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.【解析】(1)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为,第3组:×30=3人,第4组:×20=2人,第5组:×10=1人,所以第3、4、5组应分别抽取3人、2人、1人.设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4组被入选的有9种,所以其中第4组的2位同学至少有1位同学入选的概率为.题型二、频率分布直方图与概率交汇例2.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:组数分组低碳族的人数占本组的频率第一组[25,30)1200.6第二组[30,35)195p第三组[35,40)1000.5第四组[40,45)A0.4第五组[45,50)300.3第六组[50,55]150.3(1)补全频率分布直方图并求n,a,p的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.【解析】(1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为=0.06.频率分布直方图如下:第一组的人数为=200,频率为0.04×5=0.2,所以n==1000.由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以P==0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)岁中有4人,[45,50)岁中有2人.设[40,45)岁中的4人为a,b,c,d,[45,50)岁中的2人为m,n,则选取2人作为领队的选法有(a,b),(a,c),(a,d),(a,m),(a,n),(b,c),(b,d),(b,m),(b,n),(c,d),(c,m),(c,n),(d,m),(d,n),(m,n),共15种;其中恰有1人年龄在[40,45)岁的有(a,m),(a,n),(b,m),(b,n),(c,m),(c,n),(d,m),(d,n),共8种.所以选取的2名领队中恰有1人年龄在[40,45)岁的概率为.【点评】涉及频率分布直方图的考题注重频率、频数的计算,旨在考查对问题的分析与信息提取.利用样本的频率分布估计总体分布,一要正确理解小矩形的面积及纵坐标的几何意义,二要通过图表对已知数据正确分析并计算各段的频率.在频率分布直方图中,每个小矩形的面积就是相应的频率或概率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础。【变式训练2】把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.(1)求这次铅球投掷成绩合格的人数;(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a,b两位同学的成绩均为优秀,求a,b两位同学中至少有1人被选到的概率.【解析】(1)∵第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14.∴参加这次铅球投掷的总人数为=50.根据规定,第4、5、6组的成绩均为合格,人数为(0.28+0.30+0.14)×50=36.(2)∵成绩在第1、2、3组的人数为(0.04+0.10+0.14)×50=14,成绩在第5、6组的人数为(0.30+0.14)×50=22,参加这次铅球投掷的总人数为50,∴这次铅球投掷的同学的成绩的中位数在[7.95,8.85)内,即第4组.(3)设这次铅球投掷成绩优秀的5人分别为a,b,c,d,e,则选出2人的所有可能的情况为:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10种,其中a、b至少有1人的情况为:ab,ac,ad,ae,bc,bd,be,共有7种,∴a、b两位同学中至少有1人被选到的概率为P=.题型三、茎叶图与概率交汇例3.某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测试,该班的A,B两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组学生的平均分高1分.(1)若在B组学生中随机挑选1人,求其得分超过85分的概率;(2)现从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求|m-n|≤8的概率.【解析】(1)A组学生的平均分为,∴B组学生平均分为86分.设被污损的分数为x,则,解得x=88,∴B组学生的分数分别为93,91,88,83,75,其中有3人的分数超过85分.∴在B组学生随机选1人,其所得分超过85分的概率为.(2)A组学生的分数分别是94,88,86,80,77,在A组学生中随机抽取2名同学,其分数组成的基本事件(m,n)有(94,88),(94,86),(94,80),(94,77),(88,86),(88,80),(88,77),(86,80),(86,77),(80,77),共10个.随机抽取2名同学的分数m,n满足|m-n|≤8的基本事件有(94,88),(94,86),(88,86),(88,80),(86,80),(80,77),共6个.∴|m-n|≤8的概率P=.【点评】茎叶图具有对数据随时记录,随时添加的功能,方便记录与表示所有的原始数据信息,所以在样本数据较少、较为集中且位数不多时更适宜用茎叶图对样本数据统计,通过观察茎叶图中的数据分布,即可对数据的特征进行粗略的判断,存在数据被污损(或缺失)的题目是近年各地的高频考题,关键是根据茎叶图分析数据特征,先求出被污损(或缺失)的数据,然后求解相关问题。【变式训练3】某次的一次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求参加测试的总人数及分数在[80,90)之间的人数;(Ⅱ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,恰有一份分数在[90,100)之间的概率.【解析】(Ⅰ)成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同样有2人.由,解得n=25.成绩在[80,90)之间的人数为25﹣(2+7+10+2)=4人,∴参加测试人数n=25,分数在[80,90)的人数为4人.(Ⅱ)设“在[80,100]内的学生中任选两人,恰有一人分数在[90,100]内”为事件M,将[80,90)内的4人编号为a,b,c,d;[90,100]内的2人编号为A,B,在[80,100]内的任取两人的基本事件为:ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15个.其中,恰有一人成绩在[90,100]内的基本事件有aA,aB,bA,bB,cA,cB,dA,dB共8个.∴所求的概率得.题型四、样本的数字特征与概率交汇例4.一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:

[20,25]

,第二组:[25,30]

,第三组:[30,35]

,第四组:

[35,40]

,第五组:[40,45]

,得到如图所示的频率分布直方图,已知第一组有6人.(Ⅰ)求

x

;(Ⅱ)求抽取的x人的年龄的中位数(结果保留整数);(Ⅲ)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.(ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;(ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.【解析】(Ⅰ)根据频率分布直方图得第一组频率为0.015=0.05,所以,所以

x=120.(Ⅱ)设中位数为

a,

则,所以,

∴中位数为32.(Ⅲ)(i)5个年龄组的平均数为

,方差为

,5个职业组的平均数为.方差为

.(ii)评价:从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更好.【点评】对于样本数字特征估计总体的考查一般先利用公式求出数值,然后结合数据关系进行估计.样本平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使得平均数在估计总体时可靠性降低.所以对数据离散还是集中的判断多结合标准差、方差描述数据波动性的大小.标准差、方差越大,数据越分散;标准差、方差越小,数据越集中.【变式训练4】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).(1)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.表1:生产能力分组[100,110)[110,120)[120,130)[130,140)[140,150)人数48x53表2:生产能力分组[110,120)[120,130)[130,140)[140,150)人数6y3618①先确定x、y,再完成频率分布直方图,就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).【解析】(1)甲、乙被抽到的概率均为,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为P=.(2)①由题意知A类工人中应抽查25名,B类工人中应抽查75名.故4+8+x+5+3=25,得x=5,6+y+36+18=75,得y=15.频率分布直方图如下:从直方图可以判断:B类工人中个体间的差异程度更小.②=×105+×115+×125+×135+×145=123,=×115+×125+×135+×145=133.8,=×123+×133.8=131.1.A类工人生产能力的平均数、B类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.题型五.回归直线与概率交汇例5.中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

井号I123456坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)钻探深度(km)2456810出油量(L)407011090160205(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;

(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中b,a的值之差(即:)不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?

(参考公式和计算结果:,,,)(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.【解析】(Ⅰ),

回归直线必过平衡点,

则,

所以回归直线方程为y=6.5x+17.5,

当x=1时,y=6.5+17.5=24,即y的预报值为24.

(Ⅱ),,,

,均不超过10%,

所以使用位置接近的已有旧井6(1,24).

(Ⅲ)由题意知原有出油量不低于50L的井中,3,5,6这3口井是优质井,

2,4这两口井是非优质井,

由题意从这5口井中,随机选3口井的情况有:(2,3,4),

(2,3,5),

(2,3,6),

(2,4,5),

(2,4,6),

(2,5,6),

(3,4,5),

(3,4,6),

(3,5,6),(4,5,6),共10种,其中恰有2口是优质井的有(2,3,5),

(2,3,6),

(2,5,6),

(3,4,5),

(3,4,6),

(4,5,6),共6种,所以恰有2口是优质井的概率P=.【点评】利用回归直线可以进行预测,回归直线方程将部分观测值所反映的规律进行延伸,是对线性相关关系的两个变量进行分析和控制,依据自变量的取值估计和预报因变量值的基础和依据,回归直线过定点(eq\x\to(x),eq\x\to(y))是常用解题结论.【变式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论