安徽省安庆市区二十三校2022年数学九年级上册期末考试试题含解析_第1页
安徽省安庆市区二十三校2022年数学九年级上册期末考试试题含解析_第2页
安徽省安庆市区二十三校2022年数学九年级上册期末考试试题含解析_第3页
安徽省安庆市区二十三校2022年数学九年级上册期末考试试题含解析_第4页
安徽省安庆市区二十三校2022年数学九年级上册期末考试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.2.已知点,,都在反比例函数的图像上,则()A. B. C. D.3.如果点A(﹣5,y1),B(﹣,y2),C(,y3),在双曲线y=上(k<0),则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y2<y1<y3 C.y1<y2<y3 D.y1<y3<y24.如图,在正方形中,以为边作等边,延长分别交于点,连接与相交于点,给出下列结论:①;②;③;④;其中正确的是()A.①②③④ B.②③ C.①②④ D.①③④5.已知一元二次方程,,则的值为()A. B. C. D.6.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠ABB′的度数是()A.35° B.40° C.45° D.55°7.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A. B.C. D.8.若是方程的解,则下列各式一定成立的是()A. B. C. D.9.在中,,,,则的值为()A. B. C. D.10.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根11.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等12.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4 B.4+4 C.8﹣4 D.+1二、填空题(每题4分,共24分)13.某一建筑物的楼顶是“人”字型,并铺上红瓦装饰.现知道楼顶的坡度超过0.5时,瓦片会滑落下来.请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?________.(填“会”或“不会”)14.如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为___________.15.如图,在平面直角坐标系中,函数与的图象交于两点,过作轴的垂线,交函数的图象于点,连接,则的面积为_______.16.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.17.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为,六月份的营业额为万元,那么关于的函数解式是______.18.若方程的解为,则的值为_____________.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)尺规作图:作出⊙O(不写作法与证明,保留作图痕迹);(2)求证:BC为⊙O的切线.20.(8分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.(1)求的值:(2)若,求的长.21.(8分)在△ABC中,∠ACB=90°,BC=kAC,点D在AC上,连接BD.(1)如图1,当k=1时,BD的延长线垂直于AE,垂足为E,延长BC、AE交于点F.求证:CD=CF;(2)过点C作CG⊥BD,垂足为G,连接AG并延长交BC于点H.①如图2,若CH=CD,探究线段AG与GH的数量关系(用含k的代数式表示),并证明;②如图3,若点D是AC的中点,直接写出cos∠CGH的值(用含k的代数式表示).22.(10分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.23.(10分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?26.2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道.根据市场调查,在文旦上市销售的30天中,其销售价格(元公斤)与第天之间满足函数(其中为正整数);销售量(公斤)与第天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量与第天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润的最大值及相应的的值.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.2、D【解析】根据反比例函数的解析式知图像在二、四象限,y值随着x的增大而减小,故可作出判断【详解】∵k0,∴反比例函数在二、四象限,y值随着x的增大而减小,又∵,在反比例函数的图像上,,2∴0,点在第二象限,故,∴,故选D.【点睛】此题主要考察反比例函数的性质,找到点在第二象限是此题的关键.3、A【分析】先根据k<0可判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【详解】∵双曲线y=上(k<0),∴函数图象的两个分支分别位于二四象限,且在每一象限内,y随x的增大而增大.∵−5<−<0,0<,∴点A(−5,y1),B(−,y1)在第二象限,点C(,y3)在第四象限,∴y3<y1<y1.故选:A.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4、A【分析】根据等边三角形、正方形的性质求得∠ABE=30°,利用直角三角形中30°角的性质即可判断①;证得PC=CD,利用三角形内角和定理即可求得∠PDC,可求得∠BPD,即可判断②;求得∠FDP=15°,∠PBD=15°,即可证明△PDE∽△DBE,判断③正确;利用相似三角形对应边成比例可判断④.【详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,∴,

∴;故①正确;

∵PC=CD,∠PCD=30°,

∴∠PDC=∠CPD===75°,∴∠BPD=∠BPC+∠CPD=60°+75°=135°,故②正确;

∵∠PDC=75°,∴∠FDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,

∴∠PBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD,

∵∠DEP=∠DEP,

∴△PDE∽△DBE,故③正确;

∵△PDE∽△DBE,∴,即,故④正确;综上:①②③④都是正确的.

故选:A.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.5、B【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程的两根,∴p+q=,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.6、D【解析】在△ABB'中根据等边对等角,以及三角形内角和定理,即可求得∠ABB'的度数.【详解】由旋转可得,AB=AB',∠BAB'=70°,∴∠ABB'=∠AB'B=(180°-∠BAB′)=55°.故选:D.【点睛】本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.7、B【分析】本题可先由反比例函数图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.【详解】解:A、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a<0故选项A错误.B、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交于y轴于正半轴,故选项B正确.C、y=ax+1(a≠0)的图象应该交于y轴于正半轴,故选项C错误.D、由函数的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选:B.【点睛】本题考查反比例函数的图象、一次函数的图象等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.8、A【分析】本题根据一元二次方程的根的定义求解,把x=1代入方程ax2+bx+c=1得,a+b+c=1.【详解】∵x=1是方程ax2+bx+c=1的解,∴将x=1代入方程得a+b+c=1,故选:B.【点睛】本题考查的是一元二次方程的根即方程的解的定义.解该题的关键是要掌握一元二次方程ax2+bx+c=1中几个特殊值的特殊形式:x=1时,a+b+c=1;x=−1时,a−b+c=1.9、A【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,

故选:A.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.10、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.11、B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.12、A【解析】试题分析:∵四边形ABCD是正方形,∴∠D=90°,∠ACD=15°,AD=CD=2,则S△ACD=AD•CD=×2×2=2;AC=AD=2,则EC=2﹣2,∵△MEC是等腰直角三角形,∴S△MEC=ME•EC=(2﹣2)2=6﹣1,∴阴影部分的面积=S△ACD﹣S△MEC=2﹣(6﹣1)=1﹣1.故选A.考点:正方形的性质.二、填空题(每题4分,共24分)13、不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案.【详解】∵∆ABC是等腰三角形,AB=AC=13m,AH⊥BC,∴CH=BC=12m,∴AH=m,∴楼顶的坡度=,∴这一楼顶铺设的瓦片不会滑落下来.故答案是:不会.【点睛】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键.14、【分析】由题意得CP=10-3t,EC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,进而求得EF的长;如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=∠MEN,由EF//AC∠C=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,过N做NG⊥BC,可得EN=BN,最后利用三角函数的关系建立方程求解即可;【详解】解:设运动的时间为秒时;由题意得:CP=10-3t,EC=3t,BE=16-3t∵EF//AC∴△ABC∽△FEB∴∴∴EF=在Rt△PCE中,PE=如图:过N做NG⊥BC,垂足为G∵将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,∴∠PEF=∠MEN,EF=EN,又∵EF//AC∴∠C=∠CEF=∠MEB=90°∴∠PEC=∠NEG又∵∴∠CBN=∠CEP.∴∠CBN=∠NEG∵NG⊥BC∴NB=EN,BG=∴NB=EN=EF=∵∠CBN=∠NEG,∠C=NGB=90°∴△PCE∽△NGB∴∴=,解得t=或-(舍)故答案为.【点睛】本题考查了相似三角形的判定及性质的运用、三角函数值的运用、勾股定理的运用,灵活利用相似三角形的性质和勾股定理是解答本题的关键.15、6【分析】根据正比例函数y=kx与反比例函数的图象交点关于原点对称,可得出A、B两点坐标的关系,根据垂直于y轴的直线上任意两点纵坐标相同,可得出A、C两点坐标的关系,设A点坐标为(x,-),表示出B、C两点的坐标,再根据三角形的面积公式即可解答.【详解】∵正比例函数y=kx与反比例函数的图象交点关于原点对称,∴设A点坐标为(x,−),则B点坐标为(−x,),C(−2x,−),∴S=×(−2x−x)⋅(−−)=×(−3x)⋅(−)=6.故答案为6.【点睛】此题考查正比例函数的性质与反比例函数的性质,解题关键在于得出A、C两点.16、1.【解析】试题分析:易得底数为8的幂的个位数字依次为8,2,1,6,以2个为周期,个位数字相加为0,呈周期性循环.那么让1012除以2看余数是几,得到相和的个位数字即可:∵1012÷2=503…1,∴循环了503次,还有两个个位数字为8,2.∴81+81+83+82+…+81012的和的个位数字是503×0+8+2=11的个位数字.∴81+81+83+82+…+81012的和的个位数字是1.考点:探索规律题(数字的变化类——循环问题).17、或【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出五月份的营业额,再根据题意表示出六月份的营业额,即可列出方程求解.【详解】解:设增长率为x,则五月份的营业额为:,六月份的营业额为:;故答案为:或.【点睛】本题考查了一元二次方程的应用中增长率问题,若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“”.18、【分析】根据根与系数的关系可得出、,将其代入式中即可求出结果.【详解】解:∵方程的两根是,

∴、,

∴.

故答案为:.【点睛】本题主要考查了一元二次方程根与系数的关系,牢记如果一元二次方程有两根,那么两根之和等于、两根之积等于是解题的关键.三、解答题(共78分)19、(1)作图见解析;(2)证明见解析.【分析】(1)因为AD是弦,所以圆心O即在AB上,也在AD的垂直平分线上,作AD的垂直平分线,与AB的交点即为所求;(2)因为D在圆上,所以只要能证明OD⊥BC就说明BC为⊙O的切线.【详解】解:(1)如图所示,⊙O即为所求;(2)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的角平分线,∴∠CAD=∠OAD,∴∠ODA=∠CAD,∴OD∥AC.又∵∠C=90°,∴∠ODB=90°,∴BC是⊙O的切线.【点睛】本题主要考查圆的切线,熟练掌握直线与圆的位置关系是解题的关键.20、(1);(2)4【分析】(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAM,由AM=2CM,可得出CM:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,根据勾股定理即可得出结论.【详解】(1)∵,是斜边的中线,∴,∴,∵,∴.∵,∴.∴.在中,∵,∴.∴.(2)∵,∴.由(1)知,∴.∴.【点睛】本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键.21、(1)证明见解析;(2)①,证明见解析;②cos∠CGH=.【分析】(1)只要证明△ACF≌△BCD(ASA),即可推出CF=CD.(2)结论:.设CD=5a,CH=2a,利用相似三角形的性质求出AM,再利用平行线分线段成比例定理即可解决问题.(3)如图3中,设AC=m,则BC=km,m,想办法证明∠CGH=∠ABC即可解决问题.【详解】(1)证明:如图1中,∵∠ACB=90°,BE⊥AF∴∠ACB=∠ACF=∠AEB=90°∵∠ADE+∠EAD=∠BDC+∠DBC=90°,∠ADE=∠BDC,∴∠CAF=∠DBC,∵BC=AC,∴△ACF≌△BCD(ASA),∴CF=CD.(2)解:结论:.理由:如图2中,作AM⊥AC交CG的延长线于M.∵CG⊥BD,MA⊥AC,∴∠CAM=∠CGD=∠BCD=90°,∴∠ACM+∠CDG=90°,∠ACM+∠M=90°,∴∠CDB=∠M,∴△BCD∽△CAM,∴=k,∵CH=CD,设CD=5a,CH=2a,∴AM=,∵AM∥CH,∴,∴.(3)解:如图3中,设AC=m,则BC=km,m,∵∠DCB=90°,CG⊥BD,∴△DCG∽△DBC,∴DC2=DG•DB,∵AD=DC,∴AD2=DG•DB,∴,∵∠ADG=∠BDA,∴△ADG∽△BDA,∴∠DAG=∠DBA,∵∠AGD=∠GAB+∠DBA=∠GAB+∠DAG=∠CAB,∵∠AGD+∠CGH=90°,∠CAB+∠ABC=90°,∴∠CGH=∠ABC,∴.【点睛】本题为四边形综合探究题,考查相似三角形、三角函数等知识,解题时注意相似三角形的性质和平行线分线段成比例定理的应用.22、(1)证明见解析;(2).【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;

(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【详解】(1)证明:连接,,,,,在中,,,,则为圆的切线;(2)设圆的半径为,在中,,根据勾股定理得:,,在中,,,根据勾股定理得:,在中,,即,解得:.【点睛】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.23、5.5米【分析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【详解】解:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x.在Rt△BCD中,∠CBD=45°,则BD=CD=x.由题意得,x﹣x=4,解得:.答:生命所在点C的深度为5.5米.24、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元.【解析】(1)设每袋国旗图案贴纸为元,则有,解得,检验后即可求解;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得;(3)如果没有折扣,,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【详解】(1)设每袋国旗图案贴纸为元,则有,解得,经检验是方程的解,∴每袋小红旗为元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得,答:购买小红旗袋

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论