




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.B.C.D.2.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为()A. B. C. D.3.在平面直角坐标系中,以原点为位似中心,位似比为:,将缩小,若点坐标,,则点对应点坐标为()A., B. C.或, D.,或,4.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.95.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)6.不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是()A. B. C. D.7.把函数的图象,经过怎样的平移变换以后,可以得到函数的图象()A.向左平移个单位,再向下平移个单位B.向左平移个单位,再向上平移个单位C.向右平移个单位,再向上平移个单位D.向右平移个单位,再向下平移个单位8.二次函数图象的顶点坐标是()A. B. C. D.9.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个 B.5个 C.不足4个 D.6个或6个以上10.关于二次函数y=2x2+4,下列说法错误的是()A.它的开口方向向上 B.当x=0时,y有最大值4C.它的对称轴是y轴 D.顶点坐标为(0,4)11.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是()A.a>0 B.b<0C.ac<0 D.bc<012.已知正多边形的一个外角为36°,则该正多边形的边数为().A.12 B.10 C.8 D.6二、填空题(每题4分,共24分)13.把抛物线向上平移2个单位,所得的抛物线的解析式是__________.14.已知关于的方程有两个不相等的实数根,则的取值范围是________.15.在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为,则此口袋中白球的个数为____________.16.二次函数y=2x2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.17.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.18.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和F的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了____m,恰好把水喷到F处进行灭火.三、解答题(共78分)19.(8分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.20.(8分)解方程:x2﹣4x﹣12=1.21.(8分)如图,AB是⊙O的直径,C是⊙O上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.22.(10分)已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.(1)求证:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的长.23.(10分)如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的长.24.(10分)在平面直角坐标系中(如图),已知二次函数(其中a、b、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.25.(12分)如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.26.如图1,已知直线,线段在直线上,于点,且,是线段上异于两端点的一点,过点的直线分别交、于点、(点、位于点的两侧),满足,连接、.(1)求证:;(2)连结、,与相交于点,如图2,①当时,求证:;②当时,设的面积为,的面积为,的面积为,求的值.
参考答案一、选择题(每题4分,共48分)1、D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:.故选D.【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.2、B【分析】利用树状图分析,即可得出答案.【详解】共8种情况,出现“一次正面,两次反面”的情况有3种,所以概率=,故答案选择B.【点睛】本题考查的是求概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、C【分析】若位似比是k,则原图形上的点,经过位似变化得到的对应点的坐标是或.【详解】∵以原点O为位似中心,位似比为1:2,将缩小,∴点对应点的坐标为:或.
故选:C.【点睛】本题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标比等于.4、B【分析】根据二次函数的定义来求解,注意二次项的系数与次数.【详解】根据二次函数的定义,可知
m2-7=2
,且
3-m≠0
,解得
m=-3
,所以选择B.故答案为B【点睛】本题考查了二次函数的定义,注意二次项的系数不能为0.5、A【解析】先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.【详解】如图,.故选A.【点睛】本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.6、D【分析】利用概率公式直接求解即可.【详解】解:袋子装有个球,其中个红球,个白球,从中任意摸出一个球,则摸出的球是红球的概率是:故选:.【点睛】本题考查的是利用概率的定义求事件的概率.7、C【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线的顶点坐标是,抛物线线的顶点坐标是,所以将顶点向右平移个单位,再向上平移个单位得到顶点,即将函数的图象向右平移个单位,再向上平移个单位得到函数的图象.故选:C.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.8、A【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵,∴二次函数图像顶点坐标为:.故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).9、D【解析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.【详解】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.【点睛】本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.10、B【分析】根据二次函数的图象及性质与各项系数的关系,逐一判断即可.【详解】解:A.因为2>0,所以它的开口方向向上,故不选A;B.因为2>0,二次函数有最小值,当x=0时,y有最小值4,故选B;C.该二次函数的对称轴是y轴,故不选C;D.由二次函数的解析式可知:它的顶点坐标为(0,4),故不选D.故选:B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.11、C【解析】试题解析:由函数图象可得各项的系数:故选C.12、B【解析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.二、填空题(每题4分,共24分)13、【分析】根据题意直接运用平移规律“左加右减,上加下减”,在原式上加2即可得新函数解析式即可.【详解】解:∵向上平移2个单位长度,∴所得的抛物线的解析式为.故答案为.【点睛】本题主要考查二次函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14、【详解】根据题意得:△=(﹣2)2-4×m=4-4m>0,解得m<.故答案为m<.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.15、3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【详解】∵摸到红球的概率为,且袋中只有1个红球,∴袋中共有4个球,∴白球个数=4-1=3.故答案为:3.【点睛】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.16、y=2(x+2)2﹣1【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移2个单位长度所得抛物线的解析式为:y=2(x+2)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+2)2向下平移1个单位长度所得抛物线的解析式为:y=2(x+2)2﹣1,即y=2(x+2)2﹣1.故答案为:y=2(x+2)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.17、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.18、【详解】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y=-0.6x+21.2.把y=6.2代入得,-0.6x+21.2=6.2,∴x=25,∴F(25,6.2).设抛物线解析式为:y=ax2+bx+1.2,把E(20,9.2),F(25,6.2)代入得,,解之得:,∴y=-0.04x2+1.2x+1.2,设向上平移0.4m,向左后退了hm,恰好把水喷到F处进行灭火由题意得y=-0.04(x+h)2+1.2(x+h)+1.2+0.4,把F(25,6.2)代入得,6.2=-0.04×(25+h)2+1.2(25+h)+1.2+0.4,整理得:h2+20h-10=0,解之得:,(舍去).∴向后退了m故答案是:【点睛】本题考查了二次函数和一次函数的实际应用,设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入求出直线解析式,从而求出点F的坐标.把E(20,9.2),F(25,6.2)代入y=ax2+bx+1.2求出二次函数解析式.设向左平移了hm,表示出平移后的解析式,把点F的坐标代入可求出k的值.三、解答题(共78分)19、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)由题意可得:到2020年底,全省5G基站的数量是(万座).答:到2020年底,全省5G基站的数量是6万座.(2)设年平均增长率为,由题意可得:,解得:,(不符合,舍去)答:2020年底到2022年底,全省5G基站数量的年平均增长率为.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20、x1=6,x2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:或所以21、+【分析】根据扇形的面积公式进行计算即可.【详解】解:连接OC且过点O作AC的垂线,垂足为D,如图所示.∵OA=OC∴AD=1在Rt△AOD中∵∠DAO=30°∴∴OD=,∴由OA=OC;∠DAO=30可得∠COB=60°∴S扇形BOC=∴S阴影=S△AOC+S扇形BOC=+【点睛】本题考查扇形的面积公式,熟记扇形的面积公式是解题的关键.22、(1)证明见解析(2)4【分析】(1)由AD为直径,得到所对的圆周角为直角,利用等角的余角相等得到一对角相等,进而利用两对角对应相等的三角形相似即可得证;(2)连接OM,由BC为圆的切线,得到OM与BC垂直,利用锐角三角函数定义及勾股定理即可求出所求.【详解】解:(1)∵AD为圆O的直径,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)连接OM.∵BC为圆O的切线,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根据勾股定理得:ME===4.【点睛】本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义以及切线的性质,熟练掌握相似三角形的判定与性质是解答本题的关键.23、(1)详见解析;(1)1.【分析】(1)根据OD⊥BC于E可知,所以BD=CD,故可得出结论;(1)先根据圆周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于点O是AB的中点,所以OE是△ABC的中位线,故,在Rt△OBE中根据勾股定理可求出OB的长,故可得出DE的长,进而得出结论.【详解】解:(1)∵OD⊥BC于E,∴,∴BD=CD,
∴∠BCD=∠CBD;(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵OD⊥BC于E,
∴OD∥AC,
∵点O是AB的中点,
∴OE是△ABC的中位线,在Rt△OBE中,
∵BE=4,OE=3,,即OD=OB=5,
∴DE=OD-OE=5-3=1.24、(1);(2);(3)E(2,)【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入得,解得,∴此抛物线的表达式是:.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则,又∵DH//y轴,∴.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴.∴.∴tan∠DBC=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC∠BAC=45°∠BAC,∠OFA=∠OCA∠FAC=45°∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得,解得,∴直线AF的解析式为:,将x=2代入直线AF的解析式得:,∴E(2,).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.25、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)当=4时,△PBC的面积最大,最大面积是1.【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,在令其y值为0,解一元二次方程即可求出A和B的坐标;
(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高价电缆出售合同范本
- 在农村种地合同范本
- 弱电发包合同范本
- 托管学生租赁合同范本
- 房产买卖解约合同范本
- 企业文化揭秘培训课件
- 2025年采矿区计量磅房管理合同
- 2025劳动合同案例分析
- 2025实验室租赁合同范本
- 2025深圳租房合同模板
- (完整版)自考00600高级英语重点上册
- 湖南邵阳农商行招聘真题2024
- 2024年国家药品监督管理局直属单位招聘考试真题
- DL∕T 2528-2022 电力储能基本术语
- 《曼陀罗绘画疗愈-初三减压》PPT
- 关于加强施工现场安全防护用具检测的要求
- 幼儿园蚂蚁教学认识蚂蚁蚂蚁分类(课堂PPT)
- C35P10计算书
- 小学数学专题讲座:“小学数学计算能力的培养.ppt“
- 佛教开灵奠食科仪
- 土钉墙支护计算计算书(共10页)
评论
0/150
提交评论