版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知关于的一元二次方程两实数根为、,则()A.3 B.﹣3 C.1 D.﹣12.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△AOB=()A.1 B.2 C.4 D.83.如图,在△ABC中,DE//BC,,S梯形BCED=8,则S△ABC是()A.13 B.12 C.10 D.94.已知二次函数()的图象如图,则下列说法:①;②该抛物线的对称轴是直线;③当时,;④当时,;其中正确的个数是()A.4 B.3 C.2 D.15.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15 B.6 C.9 D.86.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为()A.3 B.﹣3 C.13 D.﹣137.对于二次函数,下列说法正确的是()A.图象开口方向向下; B.图象与y轴的交点坐标是(0,-3);C.图象的顶点坐标为(1,-3); D.抛物线在x>-1的部分是上升的.8.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或29.判断一元二次方程是否有实数解,计算的值是()A. B. C. D.10.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A. B. C. D.11.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.212.如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①;②;③方程的两个根是,;④当时,的取值范围是;⑤当时,随增大而增大其中结论正确的个数是A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)14.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.15.过⊙O内一点M的最长弦为10cm,最短弦为8cm,则OM=cm.16.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.17.反比例函数在第一象限内的图象如图,点是图象上一点,垂直轴于点,如果的面积为4,那么的值是__________.18.化简:-(sin60°﹣1)0﹣2cos30°=________________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB=,求直线AB对应的函数表达式.20.(8分)如图,AB为⊙O的直径,点C为⊙O上一点,CH⊥AB于H,∠CAB=30°.(1)如图1,求证:AH=3BH.(2)如图2,点D为AB下方⊙O上一点,点E为AD上一点,若∠BOE=∠CAD,连接BD,求证:OE=BD.(3)如图3,在(2)的条件下,连接CE,若CE⊥AD,OA=14,求BD的长.21.(8分)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.22.(10分)某商场销售一种电子产品,进价为元/件.根据以往经验:当销售单价为元时,每天的销售量是件;销售单价每上涨元,每天的销售量就减少件.(1)销售该电子产品时每天的销售量(件)与销售单价(元)之间的函数关系式为______;(2)商场决定每销售件该产品,就捐赠元给希望工程,每天扣除捐赠后可获得最大利润为元,求的值.23.(10分)对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.(1)计算:,;(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.24.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?25.(12分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?26.在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.(1)若a=-1.①当函数自变量的取值范围是-1≤x≤2,且n≥2时,该函数的最大值是8,求n的值;②当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.
参考答案一、选择题(每题4分,共48分)1、A【解析】根据根与系数的关系求解即可.【详解】∵关于的一元二次方程两实数根为、,∴.故选:A.【点睛】本题考查了根与系数的关系,二次项系数为1,常用以下关系:、是方程的两根时,,.2、B【分析】利用反比例函数k的几何意义判断即可.【详解】解:根据题意得:S△AOB=×4=2,故选:B.【点睛】本题考查了反比例函数系数k的几何意义,关键是熟练掌握“在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|.”3、D【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ADE的面积,再加上BCED的面积即可.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∴,∵S梯形BCED=8,∴∴故选:D【点睛】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.4、B【分析】由题意根据二次函数图像的性质,对所给说法进行依次分析与判断即可.【详解】解:∵抛物线与y轴交于原点,∴c=0,故①正确;∵该抛物线的对称轴是:,∴该抛物线的对称轴是直线,故②正确;∵,有,,∴当时,,故③错误;∵,则有,由图像可知时,,∴当时,,故④正确.故选:B.【点睛】本题考查二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.5、D【分析】首先根据正弦函数的定义求得AC的长,然后利用勾股定理求得BC的长.【详解】解:∴直角△ABC中,故选:D.【点睛】本题考查的是锐角三角形的正弦函数,理解熟记正弦三角函数定义是解决本题的关键.6、B【分析】
【详解】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故选B7、D【解析】二次函数y=2(x+1)2-3的图象开口向上,顶点坐标为(-1,-3),对称轴为直线x=-1;当x=0时,y=-2,所以图像与y轴的交点坐标是(0,-2);当x>-1时,y随x的增大而增大,即抛物线在x>-1的部分是上升的,故选D.8、D【分析】当a=b时,可得出=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入=中即可求出结论.【详解】当a=b时,=1+1=2;
当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,
∴a、b为一元二次方程x2-6x+2=0的两根,
∴a+b=6,ab=2,
∴==1.
故选:D.【点睛】此题考查根与系数的关系,分a=b及a≠b两种情况,求出的值是解题的关键.9、B【解析】首先将一元二次方程化为一般式,然后直接计算判别式即可.【详解】一元二次方程可化为:∴故答案为B.【点睛】此题主要考查一元二次方程的根的判别式的求解,熟练掌握,即可解题.10、A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形的定义,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.11、C【解析】根据根与系数的关系可得出两根之和为4,从而得出另一个根.【详解】设方程的另一个根为m,则1+m=4,∴m=3,故选C.【点睛】本题考查了一元二次方程根与系数的关系.解答关于x的一元二次方程x2-4x+c=0的另一个根时,也可以直接利用根与系数的关系x1+x2=-解答.12、C【分析】利用抛物线与轴的交点个数可对①进行判断;由对称轴方程得到,然后根据时函数值为0可得到,则可对②进行判断;利用抛物线的对称性得到抛物线与轴的一个交点坐标为,则可对③进行判断;根据抛物线在轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【详解】解:抛物线与轴有2个交点,,所以①正确;,即,而时,,即,,所以②错误;抛物线的对称轴为直线,而点关于直线的对称点的坐标为,方程的两个根是,,所以③正确;根据对称性,由图象知,当时,,所以④错误;抛物线的对称轴为直线,当时,随增大而增大,所以⑤正确.故选:.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点位置:抛物线与轴交于;抛物线与轴交点个数由△决定:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.二、填空题(每题4分,共24分)13、∠B=∠1或【解析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.14、6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得,代入数据可得答案.【详解】如图,在中,米,米,易得,,即,米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用.15、3【解析】试题分析:最长弦即为直径,最短弦即为以M为中点的弦,所以此时考点:弦心距与弦、半径的关系点评:16、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=517、1【分析】利用反比例函数k的几何意义得到|k|=4,然后利用反比例函数的性质确定k的值.【详解】解:∵△MOP的面积为4,∴|k|=4,∴|k|=1,∵反比例函数图象的一支在第一象限,∴k>0,∴k=1,故答案为:1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.18、-1【分析】根据实数的性质即可化简求解.【详解】-(sin60°﹣1)0﹣2cos30°=-1-2×=-1-=-1故答案为:-1.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊三角函数值的求解.三、解答题(共78分)19、(1)见解析;(2)【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得k、b的值即可.【详解】(1)证明:连接OB.∵OA2=AB•AC∴,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直线AB是⊙O的切线;(2)解:∵∠ABO=90°,,OB=1,∴,∴点A坐标为(2,0),∵△OAB∽△CAO,∴,即,∴,∴点C坐标为;设直线AB对应的函数表达式为y=kx+b,则,∴∴.即直线AB对应的函数表达式为.【点睛】本题考查相似三角形的判定及性质、圆的切线定理、勾股定理、一次函数解析式等知识,解题的关键是正确理解题意,求出线段的长及各点的坐标.20、(1)证明见解析;(2)证明见解析;(3)BD=2.【分析】(1)连接BC,根据直角三角形中,30度所对的直角边是斜边的一半,可得:AB=2BC,BC=2BH,可得结论;(2)由(1)得AB=2BC,AB=2OA,得OA=BC,利用ASA证明△OAE≌△BCD,可得结论;(3)过O作OM⊥AD于M,先证明∠OEA=∠BAC=30°,设OM=x,则ME=x,由△OAE≌△BCD,则∠DCE=30°,设AM=MD=y,则AE=y+x,DE=y﹣x,根据AE=2DE列等式得:y=3x,根据勾股定理列方程可得x的值,可得:BD=2OM=2.【详解】(1)证明:如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠ABC=60°,AB=2BC,∵CH⊥AB,∴∠BCH=30°,∴BC=2BH,∴AB=4BH,∴AH=3BH,(2)证明:连接BC、DC,∵∠CAD+∠CBD=180°,∠BOE=∠CAD,∴∠BOE+∠CBD=180°,∵∠BOE+∠AOE=180°,∴∠AOE=∠CBD,∵∠OAE,∠BCD是弧BD所对的圆周角∴∠OAE=∠BCD,由(1)得AB=2BC,AB=2OA,∴OA=BC,∴△OAE≌△BCD,∴OE=BD;(3)解:过O作OM⊥AD于M,∴AM=MD,∵AO=OB,∴BD=2OM,∵∠BOE=∠CAD,∠BOE=∠BAE+∠OEA,∠CAD=∠BAE+∠BAC,∴∠OEA=∠BAC=30°,设OM=x,则ME=x,由(2)得:△OAE≌△BCD,∴AE=CD,∵∠ADC,∠ABC是弧AC所对的圆周角,∴∠ADC=∠ABC=60°,∵CE⊥AD,∴∠DCE=30°,∴CD=2DE,AE=CD,∴AE=2DE,设AM=MD=y,则AE=y+x,DE=y﹣x,∴y+x=2(y﹣x),y=3x,在Rt△OAM中,OA=14,AM=3x,OM=x,OM2+AM2=OA2,,解得:x1=,x2=﹣(舍),∴OM=,∴BD=2OM=2.【点睛】本题主要考查圆的性质和三角形的性质的综合问题,添加合适的辅助线,综合应用直角三角形的性质和圆周角定理,垂径定理和圆内接四边形的性质,是解题的关键.21、(2)y=﹣x2+3x+2;(2)存在.P(﹣,).(3)【分析】(2)将A,B,C三点代入y=ax2+bx+2求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(2)∵抛物线y=ax2+bx+2(a≠0)与x轴,y轴分别交于点A(﹣2,0),B(2,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+3x+2.(2)存在.理由如下:y=﹣x2+3x+2=﹣(x﹣)2+.∵点D(3,m)在第一象限的抛物线上,∴m=2,∴D(3,2),∵C(0,2)∵OC=OB,∴∠OBC=∠OCB=25°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=25°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为yBP=kx+b(k≠0),把G(0,2),B(2,0)代入,得k=﹣,b=2,∴BP解析式为yBP=﹣x+2.yBP=﹣x+2,y=﹣x2+3x+2当y=yBP时,﹣x+2=﹣x2+3x+2,解得x2=﹣,x2=2(舍去),∴y=,∴P(﹣,).(3)理由如下,如图B(2,0),C(0,2),抛物线对称轴为直线,设N(,n),M(m,﹣m2+3m+2)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴2-=0-m,∴m=∴﹣m2+3m+2=,∴;或∴0-=2-m,∴m=∴﹣m2+3m+2=,∴;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴∴m=∴﹣m2+3m+2=∴综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.22、(1);(2)a=1.【分析】(1)利用“实际销售量=原销售量-10×上涨的钱数”可得;(2)根据单件利润减去捐赠数为最后单件利润,再根据销售利润等于单件利润乘以销售量即可求解.【详解】(1)由题意得,∴函数关系式为:(2)设每天扣除捐赠后可获得利润为w元,依题意得:∵-10<0,且抛物线的对称轴为直线,
∴当y的最大值是1440,∴,化简得:,解得:(不合题意,舍去),.答:的值为1.【点睛】本题主要考查了二次函数的应用,根据销量与售价之间的关系得出函数关系式是解题关键.23、(1)10;12.(2)猜想正确.理由见解析;(3).【分析】(1)根据“相异数”的定义即可求解;(2)设的三个数位数字分别为,,,根据“相异数”的定义列出即可求解;(3)根据,都是“相异数”,得到,,根据求出x,y的值即可求解.【详解】(1);.(2)猜想正确.设的三个数位数字分别为,,,即,.因为,,均为正整数,所以任意为正整数.(3)∵,都是“相异数”,∴;.∵,∴,∴,∵,,且,都是正整数,∴或或或,∵是“相异数”,∴;∵是“/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 受资助学生典型事迹材料范文(14篇)
- 《天体物理学时间》课件
- 文物数字化与5G技术应用-洞察分析
- 微笑线与年龄相关性-洞察分析
- 栓子催化技术进展-洞察分析
- 勤俭节约先进事迹材料(范文8篇)
- 网络拓扑演化分析-洞察分析
- 消费者价值共创研究-洞察分析
- 营销组合策略在批发零售中的应用-洞察分析
- 医疗保险个人工作总结(5篇)
- 青年应有鸿鹄志当骑骏马踏平川课件高三上学期励志主题班会
- 河北省唐山市2021-2022学年高三上学期语文期末试卷
- 华电甘肃能源有限公司华电系统内外招聘真题
- 员工宿舍管理条例
- 2024应急预案编制导则
- 江苏省徐州市2023-2024学年高一上学期1月期末抽测试题 生物 含解析
- Unit 1 You and Me Section B (1a~1d) 说课稿 2024-2025学年人教版(2024)七年级英语上册
- 园林灌溉施工合同范例
- 数值分析智慧树知到期末考试答案2024年
- 跨文化沟通心理学智慧树知到期末考试答案2024年
- 伯努利方程逐段试算法求水库回水
评论
0/150
提交评论