![2022年上海市西南位育中学高考数学倒计时模拟卷含解析_第1页](http://file4.renrendoc.com/view/97d0e0d3210524a03393ca3eb3b7c2f2/97d0e0d3210524a03393ca3eb3b7c2f21.gif)
![2022年上海市西南位育中学高考数学倒计时模拟卷含解析_第2页](http://file4.renrendoc.com/view/97d0e0d3210524a03393ca3eb3b7c2f2/97d0e0d3210524a03393ca3eb3b7c2f22.gif)
![2022年上海市西南位育中学高考数学倒计时模拟卷含解析_第3页](http://file4.renrendoc.com/view/97d0e0d3210524a03393ca3eb3b7c2f2/97d0e0d3210524a03393ca3eb3b7c2f23.gif)
![2022年上海市西南位育中学高考数学倒计时模拟卷含解析_第4页](http://file4.renrendoc.com/view/97d0e0d3210524a03393ca3eb3b7c2f2/97d0e0d3210524a03393ca3eb3b7c2f24.gif)
![2022年上海市西南位育中学高考数学倒计时模拟卷含解析_第5页](http://file4.renrendoc.com/view/97d0e0d3210524a03393ca3eb3b7c2f2/97d0e0d3210524a03393ca3eb3b7c2f25.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平行四边形中,若则()A. B. C. D.2.用数学归纳法证明1+2+3+⋯+n2=n4A.k2+1C.k2+13.设i是虚数单位,若复数()是纯虚数,则m的值为()A. B. C.1 D.34.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.6.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.7.在中,,,,若,则实数()A. B. C. D.8.已知,则的大小关系是()A. B. C. D.9.双曲线﹣y2=1的渐近线方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=010.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A. B.C. D.11.为虚数单位,则的虚部为()A. B. C. D.12.若,满足约束条件,则的最大值是()A. B. C.13 D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域为__________.14.已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为________.15.(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是____________.16.的展开式中,的系数为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前n项和为,,公差,、、成等比数列,数列满足.(1)求数列,的通项公式;(2)已知,求数列的前n项和.18.(12分)已知f(x)=|x+3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:19.(12分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.20.(12分)[选修4-5:不等式选讲]设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.21.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.22.(10分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,
平行四边形中,,
,,,
因为,
所以
,
,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).2.C【解析】
首先分析题目求用数学归纳法证明1+1+3+…+n1=n4【详解】当n=k时,等式左端=1+1+…+k1,当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故选:C.【点睛】本题主要考查数学归纳法,属于中档题./3.A【解析】
根据复数除法运算化简,结合纯虚数定义即可求得m的值.【详解】由复数的除法运算化简可得,因为是纯虚数,所以,∴,故选:A.【点睛】本题考查了复数的概念和除法运算,属于基础题.4.B【解析】
或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.5.D【解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.6.A【解析】
过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.7.D【解析】
将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.8.B【解析】
利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.9.A【解析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.10.D【解析】
设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D.11.C【解析】
利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.12.C【解析】
由已知画出可行域,利用目标函数的几何意义求最大值.【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据函数成立的条件列不等式组,求解即可得定义域.【详解】解:要使函数有意义,则,即.则定义域为:.故答案为:【点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.14.【解析】
设,由可得,整理得,即点在以为圆心,为半径的圆上.又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得.15.2【解析】
由这五位同学答对的题数分别是,得该组数据的平均数,则方差.16.16【解析】
要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),();(2).【解析】
(1)根据是等差数列,,、、成等比数列,列两个方程即可求出,从而求得,代入化简即可求得;(2)化简后求和为裂项相消求和,分组求和即可,注意讨论公比是否为1.【详解】(1)由题意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①当时,.②当时,.【点睛】此题等差数列的通项公式的求解,裂项相消求和等知识点,考查了化归和转化思想,属于一般性题目.18.(1)(2)见解析【解析】
(1)利用绝对值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式证得不等式成立;方法二,利用“的代换”的方法,结合基本不等式证得不等式成立.【详解】(1)由绝对值不等式性质得当且仅当即时等号成立,所以(2)由(1)得.法1:由柯西不等式得当且仅当时等号成立,即,所以.法2:由得,,当且仅当时“=”成立.【点睛】本小题主要考查绝对值三角不等式,考查利用柯西不等式、基本不等式证明不等式,属于中档题.19.(1),,直线的倾斜角为(2)【解析】
(1)由公式消去参数得普通方程,由公式可得直角坐标方程后可得倾斜角;(2)求出直线与轴交点,用参数表示点坐标,求出,利用三角函数的性质可得最大值.【详解】(1)由,消去得的普通方程是:由,得,将代入上式,化简得直线的倾斜角为(2)在曲线上任取一点,直线与轴的交点的坐标为则当且仅当时,取最大值.【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,属于基础题.求两点间距离的最值时,用参数方程设点的坐标可把问题转化为三角函数问题.20.(1)(2)【解析】
(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【详解】(1)不等式,即等价于或或解得,所以原不等式的解集为;(2)当时,不等式,即,所以在上有解即在上有解,所以,.【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.21.(1)在为增函数;证明见解析(2)【解析】
(1)令,求出,可推得,故在为增函数;(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.【详解】(1)当时,.记,则,当时,,.所以,所以在单调递增,所以.因为,所以,所以在为增函数.(2)由题意,得,记,则,令,则,当时,,,所以,所以在为增函数,即在单调递增,所以.①当,,恒成立,所以为增函数,即在单调递增,又,所以,所以在为增函数,所以所以满足题意.②当,,令,,因为,所以,故在单调递增,故,即.故,又在单调递增,由零点存在性定理知,存在唯一实数,,当时,,单调递减,即单调递减,所以,此时在为减函数,所以,不合题意,应舍去.综上所述,的取值范围是.【点睛】本题主要考查了导数的综合应用,利用导数研究函数的单调性、最值和零点及不等式恒成立等问题,考查化归与转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人汽车抵押贷款合同协议
- 专卖店雇佣合同范本官方版
- 专业潜水船租赁合同范本大全
- 个人与公司借款合同
- 中小企业短期流动资金贷款合同
- 主体劳务分包合作合同范本XX
- 主材采购合同协议
- 专业版酒店装修合同之六:争议解决机制
- 专业主机托管服务品质合同细则
- UI设计服务合同范例
- 2023年12月广东珠海市轨道交通局公开招聘工作人员1人笔试近6年高频考题难、易错点荟萃答案带详解附后
- 腹腔镜肾上腺肿瘤切除术查房护理课件
- 燃气罩式炉应急预案
- 药剂科合理用药课件
- 专题23平抛运动临界问题相遇问题类平抛运和斜抛运动
- 超声科医德医风制度内容
- 高三开学收心班会课件
- 蒸汽换算计算表
- 四年级计算题大全(列竖式计算,可打印)
- 科技计划项目申报培训
- 591食堂不合格食品处置制度
评论
0/150
提交评论