版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列函数中,是反比例函数的是()A. B. C. D.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,若∠BAC=20°,则∠ADC的度数是()A.90° B.100° C.110° D.130°3.用配方法解方程时,配方结果正确的是()A. B.C. D.4.的值等于()A. B. C. D.5.下列说法正确的是()A.垂直于半径的直线是圆的切线 B.经过三个点一定可以作圆C.圆的切线垂直于圆的半径 D.每个三角形都有一个内切圆6.已知某函数的图象与函数的图象关于直线对称,则以下各点一定在图象上的是()A. B. C. D.7.已知⊙O的直径为12cm,如果圆心O到一条直线的距离为7cm,那么这条直线与这个圆的位置关系是()A.相离 B.相切 C.相交 D.相交或相切8.抛物线的对称轴是直线()A.x=-2 B.x=-1 C.x=2 D.x=19.一元二次方程x2-x=0的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-110.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.11.在△ABC中,I是内心,∠BIC=130°,则∠A的度数是()A.40° B.50° C.65° D.80°12.如图,四边形内接于,为延长线上一点,若,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.14.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.15.如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB和弧BC都经过圆心O,则阴影部分的面积为______16.关于x的一元二次方程x2+4x﹣2k=0有实数根,则k的取值范围是_____.17.已知圆的半径是,则该圆的内接正六边形的面积是__________18.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.三、解答题(共78分)19.(8分)为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.(1)求甲、乙两种篮球每个的售价分别是多少元?(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?20.(8分)如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(1,4),B(4,(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.21.(8分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?22.(10分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.23.(10分)如图,为的直径,平分,交于点,过点作直线,交的延长线于点,交的延长线于点(1)求证:是的切线(2)若,,求的长24.(10分)如图,海中有一个小岛,它的周围海里内有暗礁,今有货船由西向东航行,开始在岛南偏西的处,往东航行海里后到达该岛南偏西的处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.25.(12分)如图,直线与轴交于点,与反比例函数第一象限内的图象交于点,连接,若.(1)求直线的表达式和反比例函数的表达式;(2)若直线与轴的交点为,求的面积.26.如图,已知反比例函数与一次函数的图象相交于点A、点D,且点A的横坐标为1,点D的纵坐标为-1,过点A作AB⊥x轴于点B,△AOB的面积为1.(1)求反比例函数和一次函数的解析式;(2)若一次函数y=ax+b的图像与x轴交于点C,求∠ACO的度数.(3)结合图像直接写出,当时,x的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【解析】反比例函数的形式有:①(k≠0);②y=kx﹣1(k≠0)两种形式,据此解答即可.【详解】A.它是正比例函数;故本选项错误;B.不是反比例函数;故本选项错误;C.符合反比例函数的定义;故本选项正确;D.它是正比例函数;故本选项错误.故选:C.【点睛】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.2、C【解析】根据三角形内角和定理以及圆内接四边形的性质即可解决问题;【详解】解:∵AB是直径,
∴∠ACB=90°,
∵∠BAC=20°,
∴∠B=90°-20°=70°,
∵∠ADC+∠B=180°,
∴∠ADC=110°,
故选C.【点睛】本题考查圆内接四边形的性质、三角形的内角和定理、圆周角定理等知识,解题的关键是熟练掌握基本知识.3、A【分析】利用配方法把方程变形即可.【详解】用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.4、D【分析】根据特殊角的三角函数即得.【详解】故选:D.【点睛】本题考查特殊角的三角函数,解题关键是熟悉,及的正弦、余弦和正切值.5、D【分析】根据与圆有关的基本概念依次分析各项即可判断.【详解】A.垂直于半径且经过切点的直线是圆的切线,注意要强调“经过切点”,故本选项错误;
B.经过不共线的三点一定可以作圆,注意要强调“不共线”,故本选项错误;C.圆的切线垂直于过切点的半径,注意强调“过切点”,故本选项错误;
D.每个三角形都有一个内切圆,本选项正确,故选D.【点睛】本题考查了有关圆的切线的判定与性质,解答本题的关键是注意与圆有关的基本概念中的一些重要字词,学生往往容易忽视,要重点强调.6、A【分析】分别求出各选项点关于直线对称点的坐标,代入函数验证是否在其图象上,从而得出答案.【详解】解:A.点关于对称的点为点,而在函数上,点在图象上;B.点关于对称的点为点,而不在函数上,点不在图象上;同理可C、D不在图象上.故选:.【点睛】本题考查反比例函数图象及性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键.7、A【分析】这条直线与这个圆的位置关系只要比较圆心到直线的距离与半径的大小关系即可.【详解】∵⊙O的直径为12cm,∴⊙O的半径r为6cm,如果圆心O到一条直线的距离d为7cm,d>r,这条直线与这个圆的位置关系是相离.故选择:A.【点睛】本题考查直线与圆的位置关系问题,掌握点到直线的距离与半径的关系是关键.8、B【解析】令解得x=-1,故选B.9、C【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.10、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率,故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11、D【解析】试题分析:已知∠BIC=130°,则根据三角形内角和定理可知∠IBC+∠ICB=50°,则得到∠ABC+∠ACB=100度,则本题易解.解:∵∠BIC=130°,∴∠IBC+∠ICB=50°,又∵I是内心即I是三角形三个内角平分线的交点,∴∠ABC+∠ACB=100°,∴∠A=80°.故选D.考点:三角形内角和定理;角平分线的定义.12、D【分析】根据圆内接四边形的对角互补,先求出∠ADC的度数,再求∠ADE的度数即可.【详解】解:四边形内接于-,.故选:.【点睛】本题考查的是内接四边形的对角互补,也就是内接四边形的外角等于和它不相邻的内对角.二、填空题(每题4分,共24分)13、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.14、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.15、3π【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=120°,进而求得∠AOC=120°,从而得到阴影面积为圆面积的,再利用面积公式求解.【详解】如图,作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC==3π.故答案为:3π.【点睛】本题考查了学生转化面积的能力,将不规则的面积转化为规则的面积是本题的解题关键.16、k≥﹣1【分析】根据判别式的意义得到△=41+8k≥0,然后解不等式即可.【详解】∵一元二次方程x1+4x﹣1k=0有实数根,∴△=41+8k≥0,解得,k≥﹣1.故答案为:k≥﹣1.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(1)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17、【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接、,作于,等边三角形的边长是2,,等边三角形的面积是,正六边形的面积是:;故答案为:.【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.18、-2或1.【解析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.三、解答题(共78分)19、(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)设学校计划购进甲种篮球m个,则学校计划购进乙种篮球(100−m)个;根据题意列不等式即可得到结论;(3)设购买跳绳a根,毽子b个,根据题意得方程10a+5b=290,求得b=58−2a>0,解不等式即可得到结论..【详解】(1)设甲种篮球每个的售价为元,乙种篮球每个的售价为元.依题意,得解得答:甲种篮球每个的售价为30元,乙种篮球每个的售价为70元.(2)设学校购进甲种篮球个,则购进乙种篮球个.由已知,得.解得.又,∴.设购进甲、乙两种篮球学校花的钱为元,则,∴当时,取最小值,花最少钱为2990元.花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个.(3)设购买跳绳根,毽子个,则,.解得.∵为正整数,∴有28种进货方案.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答问题.20、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(175【解析】(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4x,求出n=1,然后把把A(1,4)、(4,1)代入y=(2)根据图像解答即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.【详解】解:(1)把A(1,4)代入y=mx,得:m=4∴反比例函数的解析式为y=4x把B(4,n)代入y=4x,得:n=1∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=4x∴当x>0时,kx+b<mx的解集为0<x<1或x>4(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴p+q=44p+q=-1解得p=-5∴直线AB′的解析式为y=-5令y=0,得-5解得x=175∴点P的坐标为(175,0【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.21、(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元【解析】(1)用每件的利润乘以销售量即可得到每天的销售利润,即然后化为一般式即可;
(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;
(3)求所对应的自变量的值,即解方程然后检验即可.【详解】(1)w与x的函数关系式为:(2)∴当时,w有最大值.w最大值为1.答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.(3)当时,解得:∵想卖得快,不符合题意,应舍去.答:销售单价应定为100元.22、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点睛】此题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.解题关键是求出总情况和所求事件情况数.23、(1)证明见解析;(2)6【分析】(1)要证CD是⊙O的切线,只要连接OE,再证OE⊥CD即可.
(2)由勾股定理求得AB的长即可.【详解】证明:(1)如图,连接OE,∵OA=OE,∴∠OAE=∠OEA.∵AE平分∠CAD,∴∠OAE=∠DAE.∴∠OEA=∠DAE.∴OE∥AD.∵DE⊥AD,∴OE⊥DE.∵OE为半径,∴CD是⊙O的切线.(2)设⊙O的半径是r,∵CD是⊙O的切线,∴∠OEC=90°.由勾股定理得:OE2+CE2=OC2,即,解得r=3,即AB的长是6【点睛】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理,作出辅助线是本题的关键.24、无触礁的危险,理由见解析【分析】作高AD,由题意可得∠ACD=60°,∠ABC=30°,进而得出∠ABC=∠BAC=30°,于是AC=BC=20海里,在Rt△ADC中,利用直角三角形的边角关系,求出AD与15海里比较即可.【详解】解:过点A作ADBC,垂足为D∵∠ABC=∠ACD=∴∠BAC==∠ABC∴BC=AC=20∴=AD=20=10所以货船在航行途中无触礁的危险.【点睛】本题考查了解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,正确作出高线是解题的关键.25、(1),;(1)1【分析】(1)先由S△AOB=4,求得点B的坐标是(1,4),把点B(1,4)代入反比例函数的解析式为,可得反比例函数的解析式为:;再把A(-1,0)、B(1,4)代入直线AB的解析式为y=ax+b可得直线AB的解析式为y=x+1.(1)把x=0代入直线AB的解析式y=x+1得y=1,即OC=1,可得S△OCB=OC×1=×1×1=1.【详解】解:(1)由A(-1,0),得OA=1;∵点B(1,m)在第一象限内,S△AOB=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林师范大学《美术概论》2021-2022学年第一学期期末试卷
- 吉林师范大学《环境影响评价技术导则》2021-2022学年第一学期期末试卷
- 阳光房压型铝合金板施工和保温方案
- 吉林师范大学《地图学》2021-2022学年第一学期期末试卷
- 吉林大学《英汉翻译基础》2021-2022学年第一学期期末试卷
- 吉林大学《外科总论E》2021-2022学年第一学期期末试卷
- 幼儿园食品安全责任管理制度
- 2024工商注册房屋租赁合同
- 商业综合体绿化景观设计施工方案
- 吉林大学《软件工程专业导论》2021-2022学年期末试卷
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务三)试题及答案
- 化工企业中试阶段及试生产期间的产品能否对外销售
- 中国马克思主义与当代思考题(附答案)
- 与建设单位的协调配合及互相保护措施
- 课程设计——夹套反应釜
- 调节池施工方案范文
- Excel支票打印模板2021
- 自-铣削用量进给量进给速度(精编版)
- 浅谈化工行业建筑施工质量管理
- 技术标书综合说明
- 中国行政区划空白图
评论
0/150
提交评论