![整式的乘法知识点_第1页](http://file4.renrendoc.com/view/8374cb5593ad8d76b368f6246689d3b7/8374cb5593ad8d76b368f6246689d3b71.gif)
![整式的乘法知识点_第2页](http://file4.renrendoc.com/view/8374cb5593ad8d76b368f6246689d3b7/8374cb5593ad8d76b368f6246689d3b72.gif)
![整式的乘法知识点_第3页](http://file4.renrendoc.com/view/8374cb5593ad8d76b368f6246689d3b7/8374cb5593ad8d76b368f6246689d3b73.gif)
![整式的乘法知识点_第4页](http://file4.renrendoc.com/view/8374cb5593ad8d76b368f6246689d3b7/8374cb5593ad8d76b368f6246689d3b74.gif)
![整式的乘法知识点_第5页](http://file4.renrendoc.com/view/8374cb5593ad8d76b368f6246689d3b7/8374cb5593ad8d76b368f6246689d3b75.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整式的乘法知识点、幕的运算性质:(a*0, 、n都是正整数)(1)am-an=am+n(2)(a,,1)n=(ab)n=a°bn-a”+a=n-a例(1)・在下列运算中,计算正确的是(
同底数幕相乘,底数不变,指数相加幕的乘方,底数不变,指数相乘.积的乘方等于各因式乘方的积.同底数幕相除,底数不变,指数相减.)(A)a3a2=a6(C)/*/=/
(B)(a2)3=a5(D)(ab2)2=a2b4(2) (一/)4.(-,)= —= 2・寒指数幕的概念:a°=l(a^O)1・丄(a^O,p是正養数)任何一个不等于寒的数的负指数幕,等于这个数的正指数幕的倒数.单顼式的乘法法则:
例:(2^-2017)°=单项式相乘,把系数、同底数幕分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)3a2b2abc-—abc23
(2)(一丄〃宀)、・(一2加%)42单顼式与多项式的乘法法则:a(b+c+d)=ab+ac+ad单取式与多顼式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加例:(1)2ab(5ab2+3a2b) (2)(-5m2n)•(2n+3m-n2)6 (a+b)(c+d)=ac+ad+be+bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的相加. 例:⑴(1一x)(4—x) (2)(2兀+y)(兀一y+1)7.乘法公式:①完全平方公式:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2口诀:首平方、尾平方,乘积的二倍放中央.例:①(2对5刃2=( )2+2X()x()+(② )2 2X()x()+(
)2= ;)2= ③(=(尸= ;④(mn)2⑤丹_
[_+4(x2
]2=( )2 ;—ni-14)
+n2= ( )2②平方差公式:(a+b)(a-b)=a2-b2口诀:两个数和乘以这两个数的差,停于这两个数的平方差.注意:相同项的平方减相反项的平方例:①(x4)(A+4)=(②(32切(32d)
)2( )2
( )2= ;()2= ;3(inn)(inn}=(尸(④(-lx-2y)4x-2y)=(4 4
)2= )2( )2= ;⑤(2x+快3)(2少^3)=(⑥(2a—決3)(2x+A3)=[
尸( )2=11]=()2()2另_种方法:(2彳一決3)(2w+A3)= 炉(rn+n)(mn)(nr+ir)=( )(zn2+n2)=( )2 ( )2= 3力(
)=9护*③ 十字相乘:(x+a)(x+b)=x2+( )x+一次项的系数是a与b的 ,常数项是a与“的 例:(x+l)(兀+2)= , (x-2)(兀-3)= ,(x+5)(x_7)= , (x_3)(x+4)= 1、若9x2+^+16y2是一个完全平方式,那么ft的值是 c2、%2+ +9y2=(x+ )2;x2+2x-35=(x+7)( )3、计算:(1)(—3x2)+(2x—3y)(2x—5y)—3y(4x—5y)(2) (a_l)2_(i_a)(d+i)(4)(1-3G)~—2(l+a)(l-a)
(3)(X-1)(2X-1)-(X+1)2+1(5)[(x-y)2+m-y)]+2x(6)先化简,再求值,(x+2)(x-2)+(2x-l)2-4(x+l)(x-3),其中x=—l因式分解知识点因式分解.二、因式分解的注意事项:(1)因式分解必须是恒等变形;(2)因式分解必须分解到每个因式都不能分解为止.(3)的形式.三、因式分解的方法:⑴先提公因式,⑵再 •直到每个因式梆不可再分解为常用的公式:①平方差公式: a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2—2ab+b2=(a—b)2③十字相乘公式:x2+(a+b)x+ah= 如:分解因式:4/一25戻= ,9x2+6xy+y2= x2-3x+2= ,x2-5x-300= ,x2+(2m-l)x-2m= 2x2-18= . 4
x3-x2+—x=1把下列各式分解因式:(1)〃r(a-2)+〃2(2-d) (2)25(/n+n)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全新员工入职合同下载
- 2025广告发布委托合同书版范本
- 全新房地产买卖合同范文下载
- 公司业务担保合同
- 单位货物采购合同格式
- 幼儿园股份合伙经营合作合同书
- 2024年中考物理(安徽卷)真题详细解读及评析
- 地板砖购销合同模板
- 拓宽知识面的重要性主题班会
- 2025如果合同标的不合格怎么办反担保
- 浙教版八年级下册科学第一章 电和磁整章思维导图
- (正式版)SH∕T 3541-2024 石油化工泵组施工及验收规范
- 动物疫病传染病防控培训制度
- 美团代运营合同模板
- 初中英语七选五经典5篇(附带答案)
- GB/T 43676-2024水冷预混低氮燃烧器通用技术要求
- 特种设备检验现场事故案例分析
- 2023-2024学年西安市高二数学第一学期期末考试卷附答案解析
- 关于教师诵读技能培训课件
- 化学品使用人员培训课程
- 【京东仓库出库作业优化设计13000字(论文)】
评论
0/150
提交评论