




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是().A. B. C. D.2.若的展开式中的系数为150,则()A.20 B.15 C.10 D.253.已知,,,则()A. B.C. D.4.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定5.在中所对的边分别是,若,则()A.37 B.13 C. D.6.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则()A. B. C. D.7.二项式展开式中,项的系数为()A. B. C. D.8.已知命题:R,;命题:R,,则下列命题中为真命题的是()A. B. C. D.9.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为()A. B. C. D.10.下列图形中,不是三棱柱展开图的是()A. B. C. D.11.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.612.已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在边长为的菱形中,点在菱形所在的平面内.若,则_____.14.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.15.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_____.16.已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.18.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.19.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,,,,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中,,.20.(12分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值21.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.22.(10分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,,,,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.2.C【解析】
通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.3.C【解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.4.C【解析】
由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.【点睛】本题考查了函数的增减性及导数的应用,属中档题.5.D【解析】
直接根据余弦定理求解即可.【详解】解:∵,∴,∴,故选:D.【点睛】本题主要考查余弦定理解三角形,属于基础题.6.C【解析】
画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.故选:【点睛】解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.7.D【解析】
写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.8.B【解析】
根据,可知命题的真假,然后对取值,可得命题的真假,最后根据真值表,可得结果.【详解】对命题:可知,所以R,故命题为假命题命题:取,可知所以R,故命题为真命题所以为真命题故选:B【点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.9.B【解析】
延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.10.C【解析】
根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.11.D【解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.12.B【解析】
首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.【详解】由题意将代入双曲线的方程,得则,由,得的周长为,设的内切圆的半径为,则,故选:B【点睛】本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.【详解】解:连接设交于点以点为原点,分别以直线为轴,建立如图所示的平面直角坐标系,则:设得,解得,,或,显然得出的是定值,取则,.故答案为:.【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.14.【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.15.【解析】
计算得到||,||cosα﹣1,解得cosα,根据三角函数的有界性计算范围得到答案.【详解】由()•()=0可得()•||•||cosα﹣1×2cos||•||cosα﹣1,α为与的夹角.再由2•1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案为.【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.16.【解析】
类比,三角形边长类比三棱锥各面的面积,三角形内角类比三棱锥中侧棱与面所成角.【详解】,故,【点睛】本题考查类比推理.类比正弦定理可得,类比时有结构类比,方法类比等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由题意可知:由,求得点坐标,即可求得椭圆的方程;(Ⅱ)设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围.【详解】解:(Ⅰ)根据题意是等腰直角三角形,,设由得则代入椭圆方程得椭圆的方程为(Ⅱ)根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即②由①②得或故直线斜率可取值范围是【点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题.18.(1),证明见解析;(2)【解析】
(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型.19.(1)见解析;(2)【解析】
(1)先判断得到随机变量的所有可能取值,然后根据古典概型概率公式和组合数计算得到相应的概率,进而得到分布列和期望.(2)由于去掉年的数据后不影响的值,可根据表中数据求出;然后再根据去掉年的数据后所剩数据求出即可得到回归直线方程.【详解】(1)由数据可知,,,,,五个年份考核优秀.由题意的所有可能取值为,,,,,,,.故的分布列为:所以.(2)因为,所以去掉年的数据后不影响的值,所以.又去掉年的数据之后,所以,从而回归方程为:.【点睛】求线性回归方程时要涉及到大量的计算,所以在解题时要注意运算的合理性和正确性,对于题目中给出的中间数据要合理利用.本题考查概率和统计的结合,这也是高考中常出现的题型,属于基础题.20.(1)证明见解析(2)【解析】
(1)要证明线面平行,需证明线线平行,取的中点,连接,根据条件证明,即;(2)以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,求两个平面的法向量,利用法向量求二面角的余弦值.【详解】(1)证明:取的中点,连接.∵,∴为的中点.又为的中点,∴.依题意可知,则四边形为平行四边形,∴,从而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,不妨设,则,,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民办安徽旅游职业学院《国内外食品安全案例辨析》2023-2024学年第一学期期末试卷
- 内江师范学院《智能控制终端技术》2023-2024学年第二学期期末试卷
- 山东省潍坊市寒亭达标名校2025届八校联考中考化学试题模拟试卷含解析
- 上海邦德职业技术学院《体育上》2023-2024学年第一学期期末试卷
- 山东省潍坊市2024-2025学年初三下学期二调考试语文试题含解析
- 四川省成都市金堂县2025届四年级数学第二学期期末达标检测试题含解析
- 太原幼儿师范高等专科学校《城市设计方法论》2023-2024学年第二学期期末试卷
- 山东省威海市乳山一中2025届高三寒假测试二语文试题含解析
- 二零二五版知识产权转让合作协议书
- 技术人员用工合同书范例
- 2024年度昌平区养老院食堂餐饮服务承包合同
- 矿山生态修复施工方案及技术措施
- 化学计量学与化学分析技术考核试卷
- 2024关于深化产业工人队伍建设改革的建议全文解读课件
- 探究膜分离技术在水处理中的应用
- 洋流课件2024-2025学年高中地理人教版(2019)选择性必修一
- 2024-2025学年中职数学拓展模块一 (下册)高教版(2021·十四五)教学设计合集
- 电梯维保工程施工组织设计方案
- 2024-2030年中国消防行业市场发展分析及发展趋势与投资前景研究报告
- 外研版(2019) 必修第三册 Unit 2 Making a Difference教案
- 医院科研成果及知识产权管理规范
评论
0/150
提交评论