下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.2.已知全集,集合,则()A. B. C. D.3.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A. B. C. D.4.已知是等差数列的前项和,,,则()A.85 B. C.35 D.5.已知等式成立,则()A.0 B.5 C.7 D.136.已知数列为等比数列,若,且,则()A. B.或 C. D.7.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种8.设复数满足,则()A.1 B.-1 C. D.9.设函数,则函数的图像可能为()A. B. C. D.10.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.11.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6 B.8 C.10 D.1212.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点坐标为______.14.若满足约束条件,则的最小值是_________,最大值是_________.15.如图,在平行四边形中,,,则的值为_____.16.在中,内角的对边分别是,若,,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.18.(12分)如图,三棱锥中,,,,,.(1)求证:;(2)求直线与平面所成角的正弦值.19.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)求曲线的普通方程与直线的直角坐标方程;(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.20.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.21.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.(1)证明:平面;(2)求点N到平面CDM的距离.22.(10分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【题目详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.【答案点睛】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.2、D【答案解析】
根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【题目详解】,,,.故选:.【答案点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.3、C【答案解析】
设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【题目详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【答案点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.4、B【答案解析】
将已知条件转化为的形式,求得,由此求得.【题目详解】设公差为,则,所以,,,.故选:B【答案点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.5、D【答案解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【题目详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【答案点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.6、A【答案解析】
根据等比数列的性质可得,通分化简即可.【题目详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【答案点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.7、B【答案解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【题目详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【答案点睛】本题考查排列组合,属于基础题.8、B【答案解析】
利用复数的四则运算即可求解.【题目详解】由.故选:B【答案点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.9、B【答案解析】
根据函数为偶函数排除,再计算排除得到答案.【题目详解】定义域为:,函数为偶函数,排除,排除故选【答案点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.10、B【答案解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【题目详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.【答案点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.11、D【答案解析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.【题目详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,,设中点为,则平面,∴,∴,解得.故选:D【答案点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.12、D【答案解析】
根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【题目详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.【答案点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
变换得到,计算焦点得到答案.【题目详解】抛物线的标准方程为,,所以焦点坐标为.故答案为:【答案点睛】本题考查了抛物线的焦点坐标,属于简单题.14、06【答案解析】
作不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.【题目详解】作出可行域,如图中的阴影部分:求的最值,即求直线在轴上的截距最小和最大时,当直线过点时,轴上截距最大,即z取最小值,.当直线过点时,轴上截距最小,即z取最大值,.故答案为:0;6.【答案点睛】本题主要考查了线性规划中的最值问题,利用数形结合是解决问题的基本方法,属于中档题.15、【答案解析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【题目详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【答案点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.16、【答案解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【题目详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【答案点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.18、(1)证明见详解;(2)【答案解析】
(1)取中点,根据,利用线面垂直的判定定理,可得平面,最后可得结果.(2)利用建系,假设长度,可得,以及平面的一个法向量,然后利用向量的夹角公式,可得结果.【题目详解】(1)取中点,连接,如图由,所以由,平面所以平面,又平面所以(2)假设,由,,.所以则,所以又,平面所以平面,所以,又,故建立空间直角坐标系,如图设平面的一个法向量为则令,所以则直线与平面所成角的正弦值为【答案点睛】本题考查线面垂直、线线垂直的应用,还考查线面角,学会使用建系的方法来解决立体几何问题,将几何问题代数化,化繁为简,属中档题.19、(1)(x-1)2+y2=4,直线l的直角坐标方程为x-y-2=0;(2)3.【答案解析】
(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【题目详解】(1)由曲线C的参数方程(α为参数)(α为参数),两式平方相加,得曲线C的普通方程为(x-1)2+y2=4;由直线l的极坐标方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直线l的直角坐标方程为x-y-2=0.(2)由题意可得P(2,0),则直线l的参数方程为(t为参数).设A,B两点对应的参数分别为t1,t2,则|PA|·|PB|=|t1|·|t2|,将(t为参数)代入(x-1)2+y2=4,得t2+t-3=0,则Δ>0,由韦达定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.20、(1);(2)或.【答案解析】
(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【题目详解】(1)抛物线的准线方程为,,直线,点F到直线l的距离为,,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,,,设,,,,线段AB的中垂线交直线l于点Q,所以横坐标为3,,,,平方整理得,解得或(舍去),,所求的直线方程为或.【答案点睛】本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.21、(1)证明见解析(2)【答案解析】
(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因为平面ABMN,平面ABMN,所以,,因为,所以,因为,所以,所以,因为在直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《论文写作》课程课件
- 内蒙古鄂尔多斯西部四旗2025届高三下第一次测试数学试题含解析
- 湖北省沙洋县后港中学2025届高考英语五模试卷含解析
- 浙江省乐清市知临中学2025届高三二诊模拟考试英语试卷含解析
- 吉林省长春二中2025届高考数学四模试卷含解析
- 陕西省西安市长安区2025届高三下学期联合考试数学试题含解析
- 2025届天津五区县高考考前提分语文仿真卷含解析
- 现代学徒制课题:市域产教联合体与行业产教融合共同体内开展现场工程师培养的机制创新研究(研究思路模板、技术路线图)
- 2025届四川省德阳五中高考仿真卷语文试卷含解析
- 安徽省安庆市六校2025届高三第六次模拟考试数学试卷含解析
- 一汽大众新员工三级安全教育(入厂级)
- 十一学校行动纲要
- GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙(高清版)
- 关于房屋征收及土地收储过程中的税收政策(仅供参考)
- 唯一住房补贴申请书(共2页)
- 单面多轴钻孔组合机床动力滑台液压系统课程设计
- 中医养生脾胃为先PPT文档
- 门窗工程成品保护方案(附图)
- 八年级国学经典诵读二十首诗词
- (完整版)A4作文格纸可直接打印使用
- 浅谈班组安全教育
评论
0/150
提交评论