版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.2.己知是一元二次方程的一个根,则的值为()A.1 B.-1或2 C.-1 D.03.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+34.当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是()V(单位:m3)11.522.53P(单位:kPa)96644838.432A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176 D.P=5.如图,缩小后变为,其中、的对应点分别为、,点、、、均在图中格点上,若线段上有一点,则点在上对应的点的坐标为()A. B. C. D.6.的相反数是()A. B. C. D.7.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.8.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是()A.1 B.3 C.-1 D.-39.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=010.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA= B.cosA= C.tanA= D.cosA=11.抛物线y=-x2+3x-5与坐标轴的交点的个数是()A.0个 B.1个 C.2个 D.3个12.下表是一组二次函数的自变量x与函数值y的对应值:
1
1.1
1.2
1.3
1.4
-1
-0.49
0.04
0.59
1.16
那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.3二、填空题(每题4分,共24分)13.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.14.如图,圆的直径垂直于弦,垂足是,,,的长为__________.15.如图,D是反比例函数(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.16.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(3,4),则点F的坐标是_____.17.点A(-1,m)和点B(-2,n)都在抛物线上,则m与n的大小关系为m______n(填“”或“”).18.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.三、解答题(共78分)19.(8分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.20.(8分)某公司开发一种新的节能产品,工作人员对销售情况进行了调查,图中折线表示月销售量(件)与销售时间(天)之间的函数关系,已知线段表示函数关系中,时间每增加天,月销售量减少件,求与间的函数表达式.21.(8分)如图,是的直径,是的弦,延长到点,使,连结,过点作,垂足为.(1)求证:;(2)求证:为的切线.22.(10分)如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.(1)求m、k、b的值;(2)连接OA、OB,计算三角形OAB的面积;(3)结合图象直接写出不等式的解集.23.(10分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)画出关于原点对称的;(2)将绕顺时针旋转,画出旋转后得到的,并直接写出此过程中线段扫过图形的面积.(结果保留)24.(10分)如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.25.(12分)小明和小亮用三枚质地均匀的硬币做游戏,游戏规则是:同时抛掷这三枚硬币,出现两枚正面向上,一枚正面向下,则小明赢;出现两枚正面向下,一枚正面向上,则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.26.已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.
参考答案一、选择题(每题4分,共48分)1、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.2、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x=2代入方程求解可得m的值.【详解】把x=2代入方程(m﹣2)x2+4x﹣m2=0得到(m﹣2)+4﹣m2=0,解得:m=﹣2或m=2.∵m﹣2≠0,∴m=﹣2.故选:C.【点睛】本题考查了一元二次方程的解的定义,解题的关键是理解一元二次方程解的定义,属于基础题型.3、A【分析】利用顶点式求二次函数的解析式.【详解】设二次函数y=a(x﹣1)1+2,把(0,11)代入可求出a=-1.故二次函数的解析式为y=﹣1(x﹣1)1+2.故选A.考点:待定系数法求二次函数解析式4、D【解析】试题解析:观察发现:故P与V的函数关系式为故选D.点睛:观察表格发现从而确定两个变量之间的关系即可.5、D【分析】根据A,B两点坐标以及对应点C,D点的坐标得出坐标变化规律,进而得出P′的坐标.【详解】解:∵△ABO缩小后变为△CDO,其中A、B的对应点分别为C、D,点A、B、C、D均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),C点坐标为:(2,3),D点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在CD上的对应点P′的坐标为:().故选D.【点睛】此题主要考查了点的坐标的确定,位似图形的性质,根据已知得出对应点坐标的变化是解题关键.6、D【详解】考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.的相反数是.故选D.7、D【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】当时,一次函数经过一、二、三象限,反比例函数经过一、三象限;当时,一次函数经过一、二、四象限,反比例函数经过二、四象限.观察图形可知,只有A选项符合题意.
故选:D.【点睛】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.8、B【分析】直接根据根与系数的关系求解.【详解】由题意知:,,∴原式=2-(-1)=3故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则,.9、D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.10、B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A错误;cosA=,故B正确;tanA=,故C错误;cosA=,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.11、B【分析】根据△=b2-4ac与0的大小关系即可判断出二次函数y=-x2+3x-5的图象与x轴交点的个数再加上和y轴的一个交点即可【详解】解:对于抛物线y=-x2+3x-5,
∵△=9-20=-11<0,
∴抛物线与x轴没有交点,与y轴有一个交点,
∴抛物线y=-x2+3x-5与坐标轴交点个数为1个,故选:B.【点睛】本题考查抛物线与x轴的交点,解题的关键是记住:△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.二、填空题(每题4分,共24分)13、14π【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径1+底面周长×母线长÷1.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=14π.故答案为14π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.14、【分析】根据圆周角定理得,由于的直径垂直于弦,根据垂径定理得,且可判断为等腰直角三角形,所以,然后利用进行计算.【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴.故答案是:【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.15、-1【详解】解:∵的图象经过点C,∴C(0,1),将点C代入一次函数y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四边形DCAE的面积为4,∴S矩形OCDE=4-1=1,∴k=-1故答案为:-1.16、(6,).【分析】过点D作DM⊥OB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DM⊥OB,垂足为M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四边形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的对角线交点,∴A(4,2),代入y=,得:k=8,∴反比例函数的关系式为:y=,设直线BC的关系式为y=kx+b,将B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直线BC的关系式为y=x﹣,将反比例函数与直线BC联立方程组得:,解得:,(舍去),∴F(6,),故答案为:(6,).【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.17、<.【解析】试题解析:当时,当时,故答案为:18、1【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.三、解答题(共78分)19、(1)见解析;(2)结论仍然成立.,DE=DF,见解析;(3)仍然成立,DE=DF,见解析【分析】(1)由题意根据全等三角形的性质与判定,结合等边三角形性质证明△BED≌△CFD(ASA),即可证得DE=DF;(2)根据题意先取AC中点G,连接DG,继而再全等三角形的性质与判定,结合等边三角形性质证明△EDG≌△FDC(ASA),进而证得DE=DF;(3)由题意过点D作DN⊥AC于N,DM⊥AB于M,继而再全等三角形的性质与判定,结合等边三角形性质证明△DME≌△DNF(ASA),即可证得DE=DF.【详解】解:(1)∵AB=AC,∠A=60°,∴△ABC是等边三角形,即∠B=∠C=60°,∵D是BC的中点,∴BD=CD,∵∠EDF=120°,DF⊥AC,∴∠FDC=30°,∴∠EDB=30°,∴△BED≌△CFD(ASA),∴DE=DF.(2)取AC中点G,连接DG,如下图,∵D为BC的中点,∴DG=AC=BD=CD,∴△BDG是等边三角形,∴∠GDE+∠EDB=60°,∵∠EDF=120°,∴∠FDC+∠EDB=60°,∴∠EDG=∠FDC,∴△EDG≌△FDC(ASA),∴DE=DF,∴结论仍然成立.(3)如下图,过点D作DN⊥AC于N,DM⊥AB于M,∴∠DME=∠DNF=90°,由(1)可知∠B=∠C=60°,∴∠NDC=∠BDM=30°,DM=DN,∴∠MDN=120°,即∠NDF=∠MDE,∴△DME≌△DNF(ASA),∴DE=DF,∴仍然成立.【点睛】本题是几何变换综合题,主要考查全等三角形的判断和性质以及等边三角形的性质,根据题意构造出全等三角形是解本题的关键.20、.【分析】由时间每增加1天日销售量减少5件结合第18天的日销售量为360件,即可求出第19天的日销售量,再根据点的坐标,利用待定系数法可求出直线OD、DE的函数关系式,即可找出y与x之间的函数关系式;【详解】当时,设直线OD的解析式为将代入得,∴,∴直线OD的解析式为:,当时,根据题意“时间每增加天,月销售量减少件”,则第19天的日销售量为:360-5=355,设直线DE的解析式为,将,代入得,解得:,∴直线DE的解析式为,∴与间的函数表达式为:【点睛】本题考查了一次函数的应用,解题的关键是:根据数量间的关系列式计算;根据点的坐标,利用待定系数法求出函数关系式.21、(1)见解析;(2)见解析【分析】(1)连接AD,则AD⊥BC,再由已知,可推出是的垂直平分线,再根据垂直平分线的性质即可得出结论.(2)连接OD,证明OD⊥DE即可.根据三角形中位线定理和平行线的性质可以证明.【详解】解:(1)证明:连接∵是的直径∴又∴是的垂直平分线(2)连接∵点、分别是的中点∴又∴∴为的切线;【点睛】本题考查了直径所对的圆周角是直角,垂直平分线的性质,切线的判定等,准确作出辅助线是解题的关键.22、(1)m=1,k=1,b=-1;(1);(3)-1<x<0或x>1.【解析】试题分析:(1)先由反比例函数上的点A(1,1)求出m,再由点B(﹣1,n)求出n,则由直线经过点A、B,得二元一次方程组,求得m、k、b;(1)△AOB的面积=△BOC的面积+△AOC的面积;(3)由图象直接写出不等式的解集.试题解析:(1)由题意得:,m=1,当x=-1时,,∴B(-1,-1),∴,解得,综上可得,m=1,k=1,b=-1;(1)如图,设一次函数与y轴交于C点,当x=0时,y=-1,∴C(0,-1),∴;(3)由图可知,-1<x<0或x>1.考点:反比例函数与一次函数的交点问题.23、(1)如图所示,见解析;(2)【分析】(1)利用画中心对称图形的作图方法直接画出关于原点对称的即可;(2)利用画旋转图形的作图方法直接画出,并利用扇形公式求出线段扫过图形的面积.【详解】解:(1)如图所示(2)作图见图;由题意可知线段扫过图形的面积为扇形利用扇形公式:.【点睛】本题考查中心对称图形以及旋转图形的作图,熟练掌握相关作图技巧以及利用扇形公式是解题关键.24、(1)证明见解析;(2)PA+PB=PF+FC=PC;(3)1+.【分析】(1)欲证明AD是⊙O的切线,只需推知AD⊥AE即可;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP•PD求出AP的长,即可得出答案.【详解】(1)证明:先作⊙O的直径AE,连接PE,∵AE是直径,∴∠APE=90°.∴∠E+∠PAE=90°.又∵∠DAP=∠PBA,∠E=∠PBA,∴∠DAP=E,∴∠DAP+∠PAE=90°,即AD⊥AE,∴AD是⊙O的切线;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC中,,∴△BPA≌△BFC(AAS),∴PA=FC,AB=CB,∴PA+PB=PF+FC=PC;(3)∵△ADP∽△BDA,∴==,∵AD=2,PD=1,∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴∠PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP•PD,∴AP2=(3+AP)•1,解得:AP=或AP=(舍去),由(2)知△ABC是等边三角形,∴AC=BC/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厦门2024年项目分包合同样本3篇
- 高三上学期语文教学工作总结
- 评审材料真实性保证
- 语文学习利器西红柿与培智的完美融合
- 购货合同与购销合同的合同仲裁
- 购销合同书写技巧与细节讲解指南案例
- 购销合同更动通知
- 贴心维护技术服务合同
- 足浴店加盟合同协议
- 跟着地图去旅行
- 课题中期报告专家评议要点
- 收音机FM指标测试方法3页
- 兽药大鼠传统致畸试验指导原则
- 英格索兰空压机控制器操作说明书
- 苏州商业市场市调简析报告
- 论现代企业人力资源管理中激励机制的应用以腾讯公司为例
- CRRT治疗剂量的计算
- 量子力学公式
- (完整)风景园林概论知识点,推荐文档
- 小学语文课标目标解读PPT学习教案
- 烟草专卖局(公司)员工考核管理办法
评论
0/150
提交评论