版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.2.下列一元二次方程中两根之和为﹣3的是()A.x2﹣3x+3=0 B.x2+3x+3=0 C.x2+3x﹣3=0 D.x2+6x﹣4=03.如图,一张矩形纸片ABCD的长AB=xcm,宽BC=ycm,把这张纸片沿一组对边AB和D的中点连线EF对折,对折后所得矩形AEFD与原矩形ADCB相似,则x:y的值为()A.2 B. C. D.4.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cm C.3cm D.cm5.如图,数轴上的点,,,表示的数分别为,,,,从,,,四点中任意取两点,所取两点之间的距离为的概率是()A. B. C. D.6.已知二次函数的图象经过点,当自变量的值为时,函数的值为()A. B. C. D.7.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.128.在平面直角坐标系中,将点向下平移个单位长度,所得到的点的坐标是()A. B.C. D.9.在△ABC中,tanC=,cosA=,则∠B=()A.60° B.90° C.105° D.135°10.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C. D.二、填空题(每小题3分,共24分)11.一元二次方程x2=x的解为.12.如图,是的直径,弦则阴影部分图形的面积为_________.13.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则边AB的长为________.14.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).15.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm1.(结果保留π)16.如图,在中,,于点D,于点E,F、G分别是BC、DE的中点,若,则FG的长度为__________.17.如图,四边形是的内接四边形,若,则的大小为________.18.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)尺规作图:作出⊙O(不写作法与证明,保留作图痕迹);(2)求证:BC为⊙O的切线.20.(6分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积;21.(6分)已知二次函数y=ax2﹣2ax+k(a、k为常数,a≠0),线段AB的两个端点坐标分别为A(﹣1,2),B(2,2).(1)该二次函数的图象的对称轴是直线;(2)当a=﹣1时,若点B(2,2)恰好在此函数图象上,求此二次函数的关系式;(3)当a=﹣1时,当此二次函数的图象与线段AB只有一个公共点时,求k的取值范围;(4)若k=a+3,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,当﹣1<x<2,此二次函数图象与四边形APQB的边交点个数是大于0的偶数时,直接写出k的取值范围.22.(8分)已知抛物线y=ax2+2x﹣(a≠0)与y轴交于点A,与x轴的一个交点为B.(1)①请直接写出点A的坐标;②当抛物线的对称轴为直线x=﹣4时,请直接写出a=;(2)若点B为(3,0),当m2+2m+3≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,求m的值;(3)已知点C(﹣5,﹣3)和点D(5,1),若抛物线与线段CD有两个不同的交点,求a的取值范围.23.(8分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:①打折销售;②不打折,一次性送装修费每平方米元.试问哪种方案更优惠?24.(8分)在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.25.(10分)小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.他们在一次实验中共掷骰子次,试验的结果如下:朝上的点数出现的次数
①填空:此次实验中“点朝上”的频率为________;②小红说:“根据实验,出现点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.26.(10分)如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点.将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点.连结AC,BC,CD,设点A的横坐标为t,(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段CD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出符合上述条件的点坐标,
参考答案一、选择题(每小题3分,共30分)1、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.2、C【分析】利用判别式的意义对A、B进行判断;根据根与系数的关系对C、D进行判断.【详解】A.△=(﹣3)2﹣4×3<0,方程没有实数解,所以A选项错误;B.△=32﹣4×3<0,方程没有实数解,所以B选项错误;C.方程x2+3x﹣3=0的两根之和为﹣3,所以C选项正确;D.方程x2+6x﹣4=0的两根之和为﹣6,所以D选项错误.故选:C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.也考查了判别式的意义.3、B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】解:∵四边形ABCD是矩形,宽BC=ycm,
∴AD=BC=ycm,
由折叠的性质得:AE=AB=x,
∵矩形AEFD与原矩形ADCB相似,
∴,即,
∴x2=2y2,
∴x=y,
∴.
故选:B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.4、A【解析】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:r=cm.故选A.考点:弧长的计算.5、D【分析】利用树状图求出可能结果即可解答.【详解】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所取两点之间的距离为2的概率==.故选D.【点睛】本题考查画树状图或列表法求概率,掌握画树状图的方法是解题关键.6、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入==-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.7、B【解析】试题分析:∵DE:EA=3:4,∴DE:DA=3:3,∵EF∥AB,∴,∵EF=3,∴,解得:AB=3,∵四边形ABCD是平行四边形,∴CD=AB=3.故选B.考点:3.相似三角形的判定与性质;3.平行四边形的性质.8、B【解析】横坐标,右移加,左移减;纵坐标,上移加,下移减可得所得到的点的坐标为(2,3-1),再解即可.【详解】解:将点P向下平移1个单位长度所得到的点坐标为(2,3-1),即(2,2),故选:B.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.9、C【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=45°,进而得出答案.【详解】解:∵tanC=,cosA=,
∴∠C=30°,∠A=45°,
∴∠B=180°-∠C-∠A=105°.
故选:C.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.10、B【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【详解】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选B.【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.二、填空题(每小题3分,共24分)11、x1=0,x2=1.【解析】试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.考点:解一元二次方程-因式分解法.12、【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,∴阴影部分的面积S=S扇形COB=,
故答案为:.【点睛】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.13、1【分析】由∠AED=∠B,∠A是公共角,根据有两角对应相等的两个三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长.【详解】∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面积为4,四边形BCED的面积为5,∴△ABC的面积为9,∵AE=2,∴,解得:AB=1.故答案为1.【点睛】本题考查相似三角形的判定性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.15、60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线.16、1【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=20,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=12,根据勾股定理计算即可.【详解】解:连接EF、DF,
∵BD⊥AC,F为BC的中点,
∴DF=BC=20,
同理,EF=BC=20,
∴FE=FD,又G为DE的中点,
∴FG⊥DE,GE=GD=DE=12,由勾股定理得,FG==1,故答案为:1.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.17、100°【分析】根据圆内接四边形的性质求出∠D的度数,根据圆周角定理计算即可.【详解】∵四边形ABCD是⊙O的内接四边形,
∴∠B+∠D=180°,
∴∠D=180°-130°=50°,
由圆周角定理得,∠AOC=2∠D=100°,
故答案是:100°.【点睛】考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.18、【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是,∴圆锥的侧面扇形的弧长为cm,,解得:故答案为.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积三、解答题(共66分)19、(1)作图见解析;(2)证明见解析.【分析】(1)因为AD是弦,所以圆心O即在AB上,也在AD的垂直平分线上,作AD的垂直平分线,与AB的交点即为所求;(2)因为D在圆上,所以只要能证明OD⊥BC就说明BC为⊙O的切线.【详解】解:(1)如图所示,⊙O即为所求;(2)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的角平分线,∴∠CAD=∠OAD,∴∠ODA=∠CAD,∴OD∥AC.又∵∠C=90°,∴∠ODB=90°,∴BC是⊙O的切线.【点睛】本题主要考查圆的切线,熟练掌握直线与圆的位置关系是解题的关键.20、(1)y=-;y=-x-2;(2)6【分析】(1)先把点A(-4,2)代入,求得“m”的值得到反比例函数的解析式,再把点B(n,-4)代入所得的反比例函数的解析式中求得“n”的值,从而可得点B的坐标,最后把A、B的坐标代入中列方程组解得“k、b”的值即可得到一次函数的解析式;(2)设直线AB和x轴交于点C,先求出点C的坐标,再由S△AOB=S△AOC+S△BOC,即可计算出△AOB的面积;【详解】(1)把点A(-4,2)代入得:,解得:,∴反比例函数的解析式为:.把点B(n,-4)代入得:,解得:,∴点B的坐标为(2,-4).把点A、B的坐标代入得:,解得,∴一次函数的解析式是;(2)如图,设AB与x轴的交点为点C,在中由可得:,解得:.∴点C的坐标是(-2,0).∴OC=2,∴S△AOB=S△AOC+S△BOC=.21、(1)x=1;(2)y=﹣x2+2x+2;(3)2<k≤5或k=1;(4)2≤k<或k<2【分析】(1)根据二次函数y=ax2﹣2ax+k(a、k为常数,a≠2)即可求此二次函数的对称轴;(2)当a=﹣1时,把B(2,2)代入即可求此二次函数的关系式;(3)当a=﹣1时,根据二次函数的图象与线段AB只有一个公共点,分三种情况说明:当抛物线顶点落在AB上时,k+1=2,k=1;当抛物线经过点B时,k=2;当抛物线经过点A时,k=5,即可求此k的取值范围;(4)当k=a+3,根据题意画出图形,观察图形即可求此k的取值范围.【详解】解:(1)二次函数y=ax2﹣2ax+k(a、k为常数,a≠2),二次函数的图象的对称轴是直线x=1.故答案为x=1;(2)当a=﹣1时,y=﹣x2+2x+k把B(2,2)代入,得k=2,∴y=﹣x2+2x+2(3)当a=﹣1时,y=﹣x2+2x+k=﹣(x﹣1)2+k+1∵此二次函数的图象与线段AB只有一个公共点,当抛物线顶点落在AB上时,k+1=2,k=1当抛物线经过点B时,k=2当抛物线经过点A时,﹣1﹣2+k=2,k=5综上所述:2<k≤5或k=1;(4)当k=a+3时,y=ax2﹣2ax+a+3=a(x﹣1)2+3所以顶点坐标为(1,3)∴a+3<3∴a<2.如图,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,∴P(﹣1,2),Q(2,2)当﹣1<x<2,此二次函数图象与四边形APQB的边交点个数是大于2的偶数,当抛物线过点P时,a+2a+a+3=2,解得a=﹣∴k=a+3=,当抛物线经过点B时,4a﹣4a+a+3=2,解得a=﹣1,∴k=2,当抛物线经过点Q时,4a﹣4a+a+3=2,解得a=﹣3,∴k=2综上所述:2≤k<或k<2.【点睛】本题考查了二次函数与系数的关系,解决本题的关键是综合运用一元一次不等式组的整数解、二次函数图象上的点的坐标特征、抛物线与xx轴的交点.22、(1)①;②;(2);(1)a>或a<﹣1.【分析】(1)①令x=0,由抛物线的解析式求出y的值,便可得A点坐标;②根据抛物线的对称轴公式列出a的方程,便可求出a的值;(2)把B点坐标代入抛物线的解析式,便可求得a的值,再结合已知条件am<0,得m的取值范围,再根据二次函数的性质结合条件当m2+2m+1≤x≤m2+2m+5时,抛物线最低点的纵坐标为,列出m的方程,求得m的值,进而得出m的准确值;(1)用待定系数法求出CD的解析式,再求出抛物线的对称轴,进而分两种情况:当a>0时,抛物线的顶点在y轴左边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线上方,顶点在CD下方,根据这一条件列出a不等式组,进行解答;当a<0时,抛物线的顶点在y轴的右边,要使抛物线与线段CD有两个不同的交点,则C、D两必须在抛物线下方,抛物线的顶点必须在CD上方,据此列出a的不等式组进行解答.【详解】(1)①令x=0,得,∴,故答案为:;②∵抛物线的对称轴为直线x=﹣4,∴,∴a=,故答案为:;(2)∵点B为(1,0),∴9a+6﹣=0,∴a=﹣,∴抛物线的解析式为:,∴对称轴为x=﹣2,∵am<0,∴m>0,∴m2+2m+1>1>﹣2,∵当m2+2m+1≤x≤m2+2m+5时,y随x的增大而减小,∵当m2+2m+1≤x≤m2+2m+5,且am<0时,抛物线最低点的纵坐标为﹣,∴,整理得(m2+2m+5)2﹣4(m2+2m+5)﹣12=0,解得,m2+2m+5=6,或m2+2m+5=﹣2(△<0,无解),∴,∵m>0,∴;(1)设直线CD的解析式为y=kx+b(k≠0),∵点C(﹣5,﹣1)和点D(5,1),∴,∴,∴CD的解析式为,∵y=ax2+2x﹣(a≠0)∴对称轴为,①当a>0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴;②当a<0时,,则抛物线的顶点在y轴左侧,∵抛物线与线段CD有两个不同的交点,∴,∴a<﹣1,综上,或a<﹣1.【点睛】本题为二次函数综合题,难度较大,解题时需注意用待定系数法求出CD的解析式,再求出抛物线的对称轴,要分两种情况进行讨论.23、(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价两年物业管理费②方案:下调后的均价,比较确定出更优惠的方案.【详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去).答:平均每次降价的百分率为.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.24、(1)y=﹣x2+2x+8,其顶点为(1,9)(2)y=﹣x2+2x+3【分析】(1)根据对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0),可得,解得即可求解,(2)设令平移后抛物线为,可得D(1,k),B(0,k-1),且,根据BC平行于x轴,可得点C与点B关于对称轴x=1对称,可得C(2,k-1),根据,解得,即.作DH⊥BC于H,CT⊥x轴于T,则在△DBH中,HB=HD=1,∠DHB=90°,又AC∥BD,得△CTA∽△DHB,所以CT=AT,即,解得k=4,即可求平移后的二次函数解析式.【详解】(1)由题意得:,解得:,所以抛物线的表达式为,其顶点为(1,9).(2)令平移后抛物线为,易得D(1,k),B(0,k-1),且,由BC平行于x轴,知点C与点B关于对称轴x=1对称,得C(2,k-1),由,解得(舍正),即.作DH⊥BC于H,CT⊥x轴于T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医用纱布的消毒与无菌包装考核试卷
- 2024版电力工程保险服务合同
- 2024年度电子设备维修劳务分包合同
- 农业科学中的农村社会收入提升考核试卷
- 2024年度智能安防系统安装与维护合同
- 2024年度农产品商标许可使用合同
- 2024年度环保工程项目施工合同模板
- 控制释放肥料的制造与农业可持续发展考核试卷
- 建筑物拆除工程施工现场人防施工考核试卷
- 2024年度大米行业市场调查与需求预测合同
- 直播技巧培训
- 2024年江苏省高考化学试卷(含答案解析)
- 成都银行招聘真题
- 2023年中国铁塔招聘考试真题
- 英文2024 年的全球支付 - 更简单的界面复杂的现实
- 2024-2025学年初中音乐七年级上册(2024)人教版(2024)教学设计合集
- 和平积弊分析检查报告和整改方案
- 医院对口支援实施方案
- 某某医院心血管内科重点学科建设可行性报告
- 辽宁交投物产有限责任公司招聘笔试题库2024
- 4.2.2指数函数的图像和性质教学说课课件高一上学期数学人教A版
评论
0/150
提交评论