初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册) 公开课课件_第1页
初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册) 公开课课件_第2页
初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册) 公开课课件_第3页
初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册) 公开课课件_第4页
初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册) 公开课课件_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

26.1.2反比例函数的图象和性质(第2课时)26.1.2反比例函数的图象和性质2.会用待定系数法求反比例函数解析式.1.使学生进一步理解和掌握反比例函数的图象及性质

.3.能灵活运用函数图象和性质解决一些较综合的问题.2.会用待定系数法求反比例函数解析式.1.使学生进一步理解和函数正比例函数反比例函数解析式图象及象限性质在每一个象限内:当k>0时,y随x的增大而减小;当k<0时,y随x的增大而增大.y=kx(k≠0)当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.k<0xyoxyok>0k<0yx0y0k>0x函数正比例函数反比例函数解析式图象性质在每一个象限初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件【解析】【解析】m﹥0m²-5=-1所以必须满足{1.已知反比例函数y=mxm²-5,它的两个分支分别在第一、第三象限,求m的值?得m=2【解析】因为反比例函数y=mxm²-5,它的两个分支分别在第一、第三象限,y=mxm²-5xy0m﹥0m²-5=-1所以必须满足{1.已知反比例函数y=m2.根据图中点的坐标(1)求出y与x的函数解析式.(2)如果点A(-2,b)在双曲线上,求b的值.A(-2,b)(3,-1)x0(3)比较绿色部分和黄色部分的面积的大小..By(3)绿色部分和黄色部分的面积相等,都等于︱k︱答案:(1)(2)2.根据图中点的坐标(2)如果点A(-2,b)在双曲线上,求3.如图:A,B是双曲线y=上的任意两点.过A,B两点分别作x轴和y轴的垂线,试确定图中两个三角形的面积各是多少?5xxyoAy=5xB答:面积都是

.52三角形的面积=︱k︱3.如图:A,B是双曲线y=上的5xxyoAy=5xB例4.(成都·中考)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的解析式.(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出反比例函数的值大于一次函数的值的x的取值范围.初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件【解析】(1)把A点坐标代入反比例函数解析式得:-k+4=k,解得k=2,把A(1,2)代入y=x+b得b=1,∴这两个函数的解析式为:y=和y=x+1.(2)由方程组∴B点的坐标为(-2,-1).由图象得反比例函数的值大于一次函数的值的x的取值范围是:0<x<1或x<-2.【解析】(1)把A点坐标代入反比例函数解析式得:-k+4=k初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件3.(江津·中考)已知如图,A是反比例函数的图象上的一点,AB⊥x轴于点B,且△ABO的面积是3,则k的值是()(A)3(B)-3(C)6(D)-6【解析】选C.设A点的坐标为(a,b),则k=ab,△ABO的面积为,所以ab=6,即k=63.(江津·中考)已知如图,A是反比例函【解析】选C.设A点初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件5.(威海·中考)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(-2,-5),C(5,n),交y轴于点B,交x轴于点D.(1)求反比例函数和一次函数y=kx+b的解析式;(2)连接OA,OC.求△AOC的面积.5.(威海·中考)如图,一次函数y=kx+b的图象与反比【解析】(1)∵反比例函数的图象经过点A(-2,-5),∴m=(-2)×(-5)=10.∴反比例函数的解析式为∵点C(5,n)在反比例函数的图象上,∴n==2.∴C的坐标为(5,2).∵一次函数的图象经过点A,C,将这两个点的坐标代入y=kx+b,得∴所求一次函数的解析式为y=x-3.【解析】(1)∵反比例函数的图象经过点A(-2,(2)∵一次函数y=x-3的图象交y轴于点B,∴B点坐标为(0,-3)∴OB=3.∵A点的横坐标为-2,C点的横坐标为5,

∴S△AOC=S△AOB+S△BOC=·OB·|-2|+·OB·5=·OB·(2+5)=(2)∵一次函数y=x-3的图象交y轴于点B,通过本课时的学习,需要我们1.熟练掌握反比例函数的图象及性质.2.能用待定系数法求反比例函数解析式.3.灵活运用函数图象和性质解决一些较综合的问题.通过本课时的学习,需要我们26.1.2反比例函数的图象和性质(第2课时)26.1.2反比例函数的图象和性质2.会用待定系数法求反比例函数解析式.1.使学生进一步理解和掌握反比例函数的图象及性质

.3.能灵活运用函数图象和性质解决一些较综合的问题.2.会用待定系数法求反比例函数解析式.1.使学生进一步理解和函数正比例函数反比例函数解析式图象及象限性质在每一个象限内:当k>0时,y随x的增大而减小;当k<0时,y随x的增大而增大.y=kx(k≠0)当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.k<0xyoxyok>0k<0yx0y0k>0x函数正比例函数反比例函数解析式图象性质在每一个象限初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件【解析】【解析】m﹥0m²-5=-1所以必须满足{1.已知反比例函数y=mxm²-5,它的两个分支分别在第一、第三象限,求m的值?得m=2【解析】因为反比例函数y=mxm²-5,它的两个分支分别在第一、第三象限,y=mxm²-5xy0m﹥0m²-5=-1所以必须满足{1.已知反比例函数y=m2.根据图中点的坐标(1)求出y与x的函数解析式.(2)如果点A(-2,b)在双曲线上,求b的值.A(-2,b)(3,-1)x0(3)比较绿色部分和黄色部分的面积的大小..By(3)绿色部分和黄色部分的面积相等,都等于︱k︱答案:(1)(2)2.根据图中点的坐标(2)如果点A(-2,b)在双曲线上,求3.如图:A,B是双曲线y=上的任意两点.过A,B两点分别作x轴和y轴的垂线,试确定图中两个三角形的面积各是多少?5xxyoAy=5xB答:面积都是

.52三角形的面积=︱k︱3.如图:A,B是双曲线y=上的5xxyoAy=5xB例4.(成都·中考)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的解析式.(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出反比例函数的值大于一次函数的值的x的取值范围.初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件【解析】(1)把A点坐标代入反比例函数解析式得:-k+4=k,解得k=2,把A(1,2)代入y=x+b得b=1,∴这两个函数的解析式为:y=和y=x+1.(2)由方程组∴B点的坐标为(-2,-1).由图象得反比例函数的值大于一次函数的值的x的取值范围是:0<x<1或x<-2.【解析】(1)把A点坐标代入反比例函数解析式得:-k+4=k初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件3.(江津·中考)已知如图,A是反比例函数的图象上的一点,AB⊥x轴于点B,且△ABO的面积是3,则k的值是()(A)3(B)-3(C)6(D)-6【解析】选C.设A点的坐标为(a,b),则k=ab,△ABO的面积为,所以ab=6,即k=63.(江津·中考)已知如图,A是反比例函【解析】选C.设A点初中数学教学课件:反比例函数的图象和性质(第2课时)(人教版九年级下册)公开课课件5.(威海·中考)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(-2,-5),C(5,n),交y轴于点B,交x轴于点D.(1)求反比例函数和一次函数y=kx+b的解析式;(2)连接OA,OC.求△AOC的面积.5.(威海·中考)如图,一次函数y=kx+b的图象与反比【解析】(1)∵反比例函数的图象经过点A(-2,-5),∴m=(-2)×(-5)=10.∴反比例函数的解析式为∵点C(5,n)在反比例函数的图象上,∴n==2.∴C的坐标为(5,2).∵一次函数的图象经过点A,C,将这两个点的坐标代入y=kx+b,得∴所求一次函数的解析式为y=x-3.【解析】(1)∵反比例函数的图象经过点A(-2,(2)∵一次函数y=x-3的图象交y轴于点B,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论