2022年湖北省襄阳市襄城区数学九年级上册期末经典模拟试题含解析_第1页
2022年湖北省襄阳市襄城区数学九年级上册期末经典模拟试题含解析_第2页
2022年湖北省襄阳市襄城区数学九年级上册期末经典模拟试题含解析_第3页
2022年湖北省襄阳市襄城区数学九年级上册期末经典模拟试题含解析_第4页
2022年湖北省襄阳市襄城区数学九年级上册期末经典模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在中,,,,是线段上的两个动点,且,过点,分别作,的垂线相交于点,垂足分别为,.有以下结论:①;②当点与点重合时,;③;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个 B.5个 C.不足4个 D.6个或6个以上3.下列y和x之间的函数表达式中,是二次函数的是()A. B. C. D.y=x-34.抛物线经过平移得到抛物线,平移的方法是()A.向左平移1个单位,再向下平移2个单位B.向右平移1个单位,再向下平移2个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向上平移2个单位5.若函数其几对对应值如下表,则方程(,,为常数)根的个数为()A.0 B.1 C.2 D.1或26.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴有两个交点C.对称轴是直线线x=2D.当x>2时,y随x的增大而增大7.在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6) B.(1,﹣4) C.(1,﹣6) D.(﹣3,﹣4)8.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨9.如图,将绕着点按顺时针方向旋转,点落在位置,点落在位置,若,则的度数是()A. B. C. D.10.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.11.如图,点在的边上,以原点为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为()A. B. C. D.12.如图,BD是⊙O的直径,圆周角∠A=30,则∠CBD的度数是()A.30 B.45 C.60 D.80二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.14.如图,河的两岸、互相平行,点、、是河岸上的三点,点是河岸上一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为______米(,结果精确到0.1米)(必要可用参考数据:)15.已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.16.如图,AB为⊙O的直径,CD是弦,且CD⊥AB于点P,若AB=4,OP=1,则弦CD所对的圆周角等于_____度.17.二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是,;④当时,,其中正确的结论有__________.18.已知A(-4,2),B(2,-4)是一次函数的图像和反比例函数图像的两个交点.则关于的方程的解是__________________.三、解答题(共78分)19.(8分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?20.(8分)如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△ABC=20,BC=10,求DE的长.21.(8分)如图,已知抛物线(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.22.(10分)如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.(1)求抛物线的函数解析式;(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.23.(10分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC24.(10分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.探究线段AN、MN、CN之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”......老师:“若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”(1)探究线段AN、AB之间的数量关系,并证明;(2)探究线段AN、MN、CN之间的数量关系,并证明;(3)设AB=a,求线段CM的长(用含a的式子表示).25.(12分)如图,在中,,,点从点出发,沿以每秒的速度向点运动,同时点从点出发,沿以每秒的速度向点运动,设运动的时间为秒.(1)当为何值时,与相似?(2)当时,请直接写出的值.26.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,(1)求B到C的距离;(2)如果在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由(≈1.732).

参考答案一、选择题(每题4分,共48分)1、B【分析】利用勾股定理判定①正确;利用三角形中位线可判定②正确;③中利用相似三角形的性质;④中利用全等三角形以及勾股定理即可判定其错误.【详解】∵,,∴,故①正确;∵当点与点重合时,CF⊥AB,FG⊥AC,∴FG为△ABC的中位线∴GC=MH=,故②正确;ABE不是三角形,故不可能,故③错误;∵AC=BC,∠ACB=90°∴∠A=∠5=45°将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF∵∠2=45°∴∠1+∠3=∠3+∠4=45°∴∠DCE=∠2在△ECF和△ECD中,CF=CD,∠DCE=∠2,CE=CE∴△ECF≌△ECD(SAS)∴EF=DE∵∠5=45°∴∠BDE=90°∴,即故④错误;故选:B.【点睛】此题主要考查等腰直角三角形、三角形中位线以及全等三角形的性质、勾股定理的运用,熟练掌握,即可解题.2、D【解析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.【详解】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.【点睛】本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.3、A【分析】根据二次函数的定义(一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数)进行判断.【详解】A.可化为,符合二次函数的定义,故本选项正确;B.,该函数等式右边最高次数为3,故不符合二次函数的定义,故本选项错误;C.,该函数等式的右边是分式,不是整式,不符合二次函数的定义,故本选项错误;D.y=x-3,属于一次函数,故本选项错误.故选:A.【点睛】本题考查了二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,化简后最高次必须为二次,且二次项系数不为0.4、D【解析】∵抛物线y=-3(x+1)2-2的顶点坐标为(-1,-2),平移后抛物线y=-3x2的顶点坐标为(0,0),∴平移方法为:向右平移1个单位,再向上平移2个单位.故选D.5、C【分析】先根据表格得出二次函数的图象与x轴的交点个数,再根据二次函数与一元二次方程的关系即可得出答案.【详解】由表格可得,二次函数的图象与x轴有2个交点则其对应的一元二次方程根的个数为2故选:C.【点睛】本题考查了二次函数的图象、二次函数与一元二次方程的关系,掌握理解二次函数的图象特点是解题关键.6、B【分析】把二次函数解析式化为顶点式,逐项判断即可得出答案.【详解】∵y=x2﹣4x+4=(x﹣2)2,∴抛物线开口向上,对称轴为x=2,当x>2时,y随x的增大而增大,∴选项A、C、D说法正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B选项说法错误.故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,掌握二次函数的顶点式是解答本题的关键,即在y=a(x﹣h)2+k中,其对称轴为x=h,顶点坐标为(h,k).7、C【分析】首先得出二次函数y=2x2+4x-3=2(x+1)2-5,再求出将二次函数y=2(x+1)2-5的图象向右平移2个单位的解析式,再求出向下平移1个单位的解析式即可y=2(x-1)2-6,从而求解.【详解】解:y=2x2+4x-3=2(x+1)2-5,∵将二次函数y=2(x+1)2-5的图象向右平移2个单位的解析式,再求出向下平移1个单位,∴y=2(x-1)2-6,∴顶点坐标为(1,-6).故选C【点睛】本题考查二次函数的平移性质.8、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【点睛】本题考查了旋转的性质.10、A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11、A【解析】根据位似的性质解答即可.【详解】解:∵点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,∴点P在A′C′上的对应点P′的的坐标为:(4,3).故选A.【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,进而结合已知得出答案.12、C【解析】由BD为⊙O的直径,可证∠BCD=90°,又由圆周角定理知,∠D=∠A=30°,即可求∠CBD.【详解】解:如图,连接CD,∵BD为⊙O的直径,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故选C.【点睛】本题利用了直径所对的圆周角是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(每题4分,共24分)13、1【分析】连接OC,根据反比例函数的几何意义,求出△BCO面积即可解决问题.【详解】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=1,故答案为:1.【点睛】本题考查反比例函数、切线的性质等知识,解题的关键是理解S△BCO=,属于中考常考题型.14、54.6【分析】过P点作PD垂直直线b于点D,构造出两个直角三角形,设河两岸之间的距离约为x米,根据所设分别求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【详解】过P点作PD垂直直线b于点D设河两岸之间的距离约为x米,即PD=x,则,可得:解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD垂直直线b于点D,构造出直角三角形.15、2或1【解析】分析:分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.详解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=1cm.∴AB与CD之间的距离为1cm或2cm.故答案为2或1.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.16、60或1.【分析】先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出和的度数.【详解】如图,连接OC,OD,BC,BD,AC,AD,∵AB为⊙O的直径,AB=4,∴OB=2,又∵OP=1,∴BP=1,∵CD⊥AB,∴CD垂直平分OB,∴CO=CB,DO=DB,又OC=OD,∴OC=CB=DB=OD,∴四边形ODBC是菱形,∴∠COD=∠CBD,∵∠COD=2∠CAD,∴∠CBD=2∠CAD,又∵四边形ADBC是圆内接四边形,∴∠CAD+∠CBD=180°,∴∠CAD=60°,∠CBD=1°,∵弦CD所对的圆周角有∠CAD和∠CBD两个,故答案为:60或1.【点睛】本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.17、①②④【分析】①由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为,得到b<0,可以①进行分析判断;

②由对称轴为,得到2a=b,b-2a=0,可以②进行分析判断;

③对称轴为x=-1,图象过点(-4,0),得到图象与x轴另一个交点(2,0),可对③进行分析判断;

④抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),即可对④进行判断.【详解】解:①∵抛物线的开口向下,

∴a<0,

∵与y轴的交点在y轴的正半轴上,

∴c>0,

∵对称轴为<0

∴b<0,

∴abc>0,故①正确;

②∵对称轴为,∴2a=b,

∴2a-b=0,故②正确;

③∵对称轴为x=-1,图象过点A(-4,0),

∴图象与x轴另一个交点(2,0),

∴关于x的一元二次方程ax2+bx+c=0的解为x=-4或x=2,故③错误;

④∵抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),

∴当y>0时,-4<x<2,故④正确;∴其中正确的结论有:①②④;故答案为:①②④.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.18、x1=-4,x1=1【分析】利用数形结合的思想解决问题即可.【详解】∵A(﹣4,1),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y图象的两个交点,∴关于x的方程kx+b的解是x1=﹣4,x1=1.故答案为:x1=﹣4,x1=1.【点睛】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共78分)19、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,∵1440>0,∴y随x的增大而增大∴当x=5时,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣)2+7870∴当x=时,y有最大值.但x只能取整数,∴x取8或1.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×+7870=7840(元)∵7840元>6400元∴每辆次小车的停车费应定为8元,此时的日净收入为7840元.答:每辆次小车的停车费应定为8元,此时的日净收入为7840元.【点睛】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.20、(1)见解析;(2)【分析】(1)根据题目条件证明和,利用两组对应角相等的三角形相似,证明;(2)过点A作于点M,先通过的面积求出AM的长,根据得到,再算出DE的长.【详解】解:(1)∵,∴,∵D是BC边上的中点且∴,∴,∴;(2)如图,过点A作于点M,∵,∴,解得,∵,,∴,∵,∴,∵,,∴,∴,∴.【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.21、(1);(2)P(1,0);(3)M(1,)(1,)(1,﹣1)(1,0).【分析】(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可;(2)由图知:A.B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l与x轴的交点,即为符合条件的P点;(3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、③AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解.【详解】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线中,得:,解得:,故抛物线的解析式:.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x==1,故P(1,0);(3)如图所示:抛物线的对称轴为:x==1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:=,==,=10;①若MA=MC,则,得:=,解得:m=﹣1;②若MA=AC,则,得:=10,得:m=;③若MC=AC,则,得:=10,得:,;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.22、(1);(2)存在,D的坐标为(2,6);(3)存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,点M的坐标为:(2,0)或(6,0)或(,0)或(,0).【分析】(1)根据点,利用待定系数法求解即可;(2)先根据函数解析式求出点C、D坐标,再将过点D作y轴的平行线交BC于点E,利用待定系数法求出直线BC的函数解析式,从而得出点E坐标,然后根据得出的面积表达式,最后利用二次函数的性质求出的面积取最大值时m的值,从而可得点D坐标;(3)根据平行四边形的定义分两种情况:BD为平行四边形的边和BD为平行四边形的对角线,然后先分别根据平行四边形的性质求出点N坐标,从而即可求出点M坐标.【详解】(1)∵抛物线经过点∴解得故抛物线的解析式为;(2)的面积存在最大值.求解过程如下:,当时,由题意,设点D坐标为,其中如图1,过点D作y轴的平行线交BC于点E设直线BC的解析式为把点代入得解得∴直线BC的解析式为∴可设点E的坐标为由二次函数的性质可知:当时,随m的增大而增大;当时,随m的增大而减小则当时,取得最大值,最大值为6此时,故的面积存在最大值,此时点D坐标为;(3)存在.理由如下:由平行四边形的定义,分以下两种情况讨论:①当BD是平行四边形的一条边时如图2所示:M、N分别有三个点设点∴点N的纵坐标为绝对值为6即解得(与点D重合,舍去)或或则点的横坐标分别为∴点M坐标为或或即点M坐标为或或②如图3,当BD是平行四边形的对角线时∴此时,点N与C重合,,且点M在点B右侧,即综上,存在这样的点M,使得以点为顶点的四边形是平行四边形.点M坐标为或或或.【点睛】本题考查了利用待定系数法求函数的解析式、二次函数的图象与性质、平行四边形的定义与性质等知识点,较难的是题(3),依据平行四边形的定义,正确分两种情况讨论是解题关键.23、(1)线段AB的垂直平分线(或中垂线);(2)AC=53.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.24、(1)(2)或,证明见解析(3)【分析】(1)过B做BQ∥NC交AD延长线于Q,构造出全等三角形△BDQ≌△CDM(ASA)、相似三角形△ANM∽△ABQ,再利用全等和相似的性质即可得出结论;(2)延长AD至H,使AD=DH,连接CH,可得△ABD≌△HCD(SAS),进一步可证得,得到,然后证明,即可得到结论:;延长CM至Q,使QM=CM,连接AQ,延

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论