2022年河南省洛阳洛宁县联考九年级数学上册期末考试模拟试题含解析_第1页
2022年河南省洛阳洛宁县联考九年级数学上册期末考试模拟试题含解析_第2页
2022年河南省洛阳洛宁县联考九年级数学上册期末考试模拟试题含解析_第3页
2022年河南省洛阳洛宁县联考九年级数学上册期末考试模拟试题含解析_第4页
2022年河南省洛阳洛宁县联考九年级数学上册期末考试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若将抛物线向右平移2个单位后,所得抛物线的表达式为y=2x2,则原来抛物线的表达式为()A.y=2x2+2 B.y=2x2﹣2 C.y=2(x+2)2 D.y=2(x﹣2)22.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.113.按如图所示的运算程序,输入的的值为,那么输出的的值为()A.1 B.2 C.3 D.44.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k<3 B.k≥3 C.k>3 D.k≠35.若一次函数的图象不经过第二象限,则关于的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定6.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是A.正方体B.长方体C.三棱柱D.圆锥7.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.8.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是()A.3:2 B.4:3 C.2:1 D.2:39.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B. C.3 D.10.已知关于的一元二次方程有一个根为,则另一个根为()A. B. C. D.11.已知∠A是锐角,,那么∠A的度数是()A.15° B.30° C.45° D.60°12.如图是二次函数图象的一部分,图象过点,对称轴为直线,给出四个结论:①;②;③若点、为函数图象上的两点,则;④关于的方程一定有两个不相等的实数根.其中,正确结论的是个数是()A.4 B.3 C.2 D.1二、填空题(每题4分,共24分)13.若,则锐角α的度数是_____.14.如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.15.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是_____.16.在矩形中,点是边上的一个动点,连接,过点作与点,交射线于点,连接,则的最小值是_____________17.如图,将二次函数y=(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.18.已知两个数的差等于2,积等于15,则这两个数中较大的是.三、解答题(共78分)19.(8分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.20.(8分)如图,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,点P从点A出发,沿折线AB﹣BO向终点O运动,在AB上以每秒5个单位长度的速度运动,在BO上以每秒3个单位长度的速度运动;点Q从点O出发,沿OA方向以每秒个单位长度的速度运动.P,Q两点同时出发,当点P停止时,点Q也随之停止.过点P作PE⊥AO于点E,以PE,EQ为邻边作矩形PEQF,设矩形PEQF与△ABO重叠部分图形的面积为S,点P运动的时间为t秒.(1)连结PQ,当PQ与△ABO的一边平行时,求t的值;(2)求S与t之间的函数关系式,并直接写出自变量t的取值范围.21.(8分)如图,在平面直角系中,点A在x轴正半轴上,点B在y轴正半轴上,∠ABO=30°,AB=2,以AB为边在第一象限内作等边△ABC,反比例函数的图象恰好经过边BC的中点D,边AC与反比例函数的图象交于点E.(1)求反比例函数的解析式;(2)求点E的横坐标.22.(10分)如图,是圆的直径,平分,交圆于点,过点作直线,交的延长线于点,交的延长线于点.(1)求证:是圆的切线;(2)若,,求的长.23.(10分)如图,已知中,以为直径的⊙交于,交于,,求的度数.24.(10分)“十一”黄金周期间,我市享有“江南八达岭”美誉的江南长城旅游区,为吸引游客组团来此旅游,特推出了如下门票收费标准:标准一:如果人数不超过20人,门票价格60元/人;标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.(1)若某单位组织23名员工去江南长城旅游区旅游,购买门票共需费用多少元?(2)若某单位共支付江南长城旅游区门票费用共计1232元,试求该单位这次共有多少名员工去江南长城旅游区旅游?25.(12分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?26.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:根据平移的规律,把已知抛物线的解析式向左平移即可得到原来抛物线的表达式.详解:∵将抛物线向右平移1个单位后,所得抛物线的表达式为y=1x1,∴原抛物线可看成由抛物线y=1x1向左平移1个单位可得到原抛物线的表达式,∴原抛物线的表达式为y=1(x+1)1.故选C.点睛:本题主要考查了二次函数的图象与几何变换,掌握函数图象的平移规律是解题的关键,即“左加右减,上加下减”.2、A【详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.3、D【分析】把代入程序中计算,知道满足条件,即可确定输出的结果.【详解】把代入程序,∵是分数,∴不满足输出条件,进行下一轮计算;把代入程序,∵不是分数∴满足输出条件,输出结果y=4,故选D.【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则.4、C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线在每一个象限内,y随x的增大而减小,∴k-3>0∴k>3故选:C.【点睛】本题考查了反比例函数的性质,掌握反比例函数,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5、A【分析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.【详解】解:一次函数的图象不经过第二象限,,,,方程有两个不相等的实数根.故选.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.6、C【解析】解:只有三棱柱的俯视图为三角形,故选C.7、D【分析】根据三角形全等的判定定理逐项判断即可.【详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【点睛】本题考查了三角形全等的判定定理,熟记各定理是解题关键.8、A【分析】过点D作DG∥AC,根据平行线分线段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值.【详解】解:过点D作DG∥AC,与BF交于点G.

∵AD=4DE,

∴AE=3DE,

∵AD是△ABC的中线,∴∵DG∥AC∴,即AF=3DG,即FC=1DG,∴AF:FC=3DG:1DG=3:1.

故选:A.【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键.9、D【解析】∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故选D.10、B【分析】根据一元二次方程的根与系数的关系,x₁+x₂=,把x₁=1代入即可求出.【详解】解:方程有一个根是,另-一个根为,由根与系数关系,即即方程另一根是故选:.【点睛】本题考查了一元二次方程根与系数的关系的应用,还可根据一元二次方程根的定义先求出k的值,再解方程求另一根.11、C【分析】根据特殊角的三角函数值求解即可.【详解】∵,且∠A是锐角,∴∠A=45°.故选:C.【点睛】本题主要考查了特殊角的三角函数值,熟练掌握相关数值是解题关键.12、C【分析】①根据抛物线开口方向、对称轴及与y轴交点情况可判断;②根据抛物线对称轴可判断;③根据点离对称轴的远近可判断;④根据抛物线与直线交点个数可判断.【详解】由图象可知:开口向下,故,

抛物线与y轴交点在x轴上方,故>0,

∵对称轴,即同号,

∴,

∴,故①正确;∵对称轴为,

∴,

∴,故②不正确;∵抛物线是轴对称图形,对称轴为,点关于对称轴为的对称点为当时,

此时y随的增大而减少,

∵30,

∴,故③错误;∵抛物线的顶点在第二象限,开口向下,与轴有两个交点,

∴抛物线与直线有两个交点,

∴关于的方程有两个不相等的实数根,所以④正确;综上:①④正确,共2个;故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握函数图象及性质,能够从函数图象获取信息,结合函数解析式进行求解是关键.二、填空题(每题4分,共24分)13、45°.【分析】直接利用特殊角的三角函数值得出答案.【详解】解:∵,∴α=45°.故答案为:45°.【点睛】本题考查的知识点特殊角的三角函数值,理解并熟记特殊角的三角函数值是解题的关键.14、(﹣1,1)【分析】观察图象可知,点B1旋转8次为一个循环,利用这个规律解决问题即可.【详解】解:观察图象可知,点B1旋转8次一个循环,∵2018÷8=252余数为2,∴点B2019的坐标与B3(﹣1,1)相同,∴点B2019的坐标为(﹣1,1).故答案为(﹣1,1).【点睛】本题考查坐标与图形的变化−旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.15、16:25【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【详解】解:∵两个相似三角形的相似比为:,∴这两个三角形的面积比;故答案为:∶.【点睛】本题考查了相似三角形性质,解题的关键是熟记相似三角形的性质.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.16、【分析】根据题意可点G在以AB为直径的圆上,设圆心为H,当HGC在一条直线上时,CG的值最值,利用勾股定理求出CH的长,CG就能求出了.【详解】解:点的运动轨迹为以为直径的为圆心的圆弧。连结GH,CH,CG≥CH-GH,即CG=CH-GH时,也就是当三点共线时,值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案为:【点睛】本题考查了矩形的性质、勾股定理、三角形三边的关系.CGH三点共线时CG最短是解决问题的关键.把动点转化成了定点,问题就迎刃而解了..17、y=0.2(x-2)+2【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=1,∴A(1,1),B(4,1),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=1.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=1AA′=12,∴AA′=4,即将函数y=(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+2.故答案为y=0.2(x﹣2)2+2.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.18、5【分析】设这两个数中的大数为x,则小数为x﹣2,由题意建立方程求其解即可.【详解】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为5;考点:一元二次方程的应用.三、解答题(共78分)19、(1)﹣2≤x<0或x≥4;(2)y=﹣,y=﹣x+2;(3)6【分析】(1)根据图像即可得到答案;(2)将点A(4,﹣2),B(﹣2,m)的坐标分别代入解析式即可得到答案;(3)过点B作BD⊥AC,根据点A、B的坐标求得AC、BD的长度,即可求得图形面积.【详解】解:(1)由图象可知:不等式﹣x+n≤的解集为﹣2≤x<0或x≥4;(2)∵一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.∴k=4×(﹣2)=﹣2m,﹣2=﹣4+n解得m=4,k=﹣8,n=2,∴反比例函数和一次函数的解析式分别为y=﹣,y=﹣x+2;(3)由(2)知B(-2,4),过点B作BD⊥AC,交AC的延长线于D,∵A(4,﹣2),B(-2,4),∴AC=2,BD=2+4=6,S△ABC=.【点睛】此题考查反比例函数的性质,待定系数法求函数解析式,反比例函数与一次函数的关系,在求图像中三角形面积时用点的坐标表示线段的长度.20、(1)当与的一边平行时,或;(2)【分析】(1)先根据一次函数确定点、的坐标,再由、,可得、,由此构建方程即可解决问题;(2)根据点在线段上、点在线段上的位置不同、自变量的范围不同,进行分类讨论,得出与的分段函数.【详解】解:(1)∵在中,令,则;令,则∴,∴,①当时,,则∴∴②当时,,则∴∴∴综上所述,当与的一边平行时,或.(2)①当0≤t≤时,重叠部分是矩形PEQF,如图:∴∴∴∴,,∴;②当<t≤2时,如图,重叠部分是四边形PEQM,∴,,,,易得∴,∴;③当2<t≤3时,重叠部分是五边形MNPOQ,如图:∴∴,∴,∴,,,∴;④当3<t<4时,重叠部分是矩形POQF,如图:∵,,∴,∴综上所述,.【点睛】此题主要考查了相似三角形的判定与性质以及矩形和梯形的面积求法等知识,利用分类讨论的思想方法是解题的关键.21、(1);(2).【分析】(1)直接利用等边三角形的性质结合举行的判定方法得出D点坐标进而得出答案;(2)首先求出AC的解析式进而将两函数联立求出E点坐标即可.【详解】解:(1)∵∠ABO=30°,AB=2,∴OA=1,,连接AD.∵△ABC是等边三角形,点D是BC的中点,∴AD⊥BC,又∠OBD=∠BOA=90°,∴四边形OBDA是矩形,∴,∴反比例函数解析式是.(2)由(1)可知,A(1,0),,设一次函数解析式为y=kx+b,将A,C代入得,解得,∴.联立,消去y,得,变形得x2﹣x﹣1=0,解得,,∵xE>1,∴.【点睛】本题主要考察反比例函数综合题,解题关键是熟练掌握计算法则求出AC的解析式.22、(1)证明见解析;(2)AE=.【分析】(1)由题意连接OE,由角平分线的性质并结合平行线的性质进行分析故可得CD是⊙O的切线;(2)根据题意设r是⊙O的半径,在Rt△CEO中,,进而有OE∥AD可得△CEO∽△CDA,可得比例关系式,代入进行求解即可.【详解】解:(1)证明:连结,∵平分,∴∵,∴,∴,∴∵,∴,∴是圆的切线.(2)设是圆的半径,在中,即.解得.∵,∴∽∴即,解得,∴=.【点睛】本题考查圆相关,熟练掌握并利用圆的切线定理以及相似三角形的性质进行分析是解题的关键.23、40°【分析】连接AE,判断出AB=AC,根据∠B=∠C=70°求出∠BAC=40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠DOE的度数.【详解】解:连接∵是⊙的直径.∴,∴,∵,∴∴∴,∴.【点睛】本题考查了等腰三角形的性质和圆周角定理,把圆周角转化为圆心角是解题的关键.24、(1)112;(2)22【分析】(1)利用单价=原价﹣2×超出20人的人数,可求出22人去旅游时门票的单价,再利用总价=单价×数量即可求出结论;(2)设该单位这次共有x名员工去江南长城旅游区旅游,利用数量=总价÷单价结合人数为整数可得出20<x≤27,由总价=单价×数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)60﹣2×(23﹣20)=54(元/人),54×23=1452(元).答:购买门票共需费用112

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论