版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【题型综述】函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间上函数的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数在上连续,在内可导,求在上的最大值与最小值的步骤为:(1)求在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间的整体而言;(2)在函数的定义区间内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f(x)的极值点不能是区间的端点,而最值点可以是区间的端点;(4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得.【典例指引】例1.已知函数.(1)求曲线在点处的切线方程;(2)求函数在区间上的最大值和最小值.【思路引导】(1)求切线方程首先求导,然后将切点的横坐标代入导函数得切线斜率,然后根据点斜式写直线方程即可,(2)求函数在某区间的最值问题,先求出函数的单调区间,然后根据函数在所给区间的单调性确定最值的取值地方从而计算得出最值点评:对于导数的几何意义的应用问题,特别是导数切线方程的求法一定要做到非常熟练,这是必须得分题,而对于函数最值问题首先要能准确求出函数的单调区间,然后根据所给区间确定函数去最值的点即可得到最值例2.设函数.(1)关于的方程在区间上有解,求的取值范围;(2)当时,恒成立,求实数的取值范围.【思路引导】(1)方程等价于,利用导数研究函数的单调性,结合函数图象可得的取值范围;(2)恒成立等价于恒成立,两次求导,求得的最小值为零,从而可得实数的取值范围.*试题解析:(1)方程即为,令,则,当时,随变化情况如表:↗极大值↘,当时,,的取值范围是.例3.已知函数的一个极值为.(1)求实数的值;(2)若函数在区间上的最大值为18,求实数的值.【思路引导】(1)由题意得,函数有两个极值为和令,从而得到实数的值;(2)研究函数在区间上的单调性,明确函数的最大值,建立关于实数的方程,解之即可.*试题解析:(1)由,得,令,得或;令,得;令,得或.所以函数有两个极值为和令.若,得,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清洁用垫相关项目建议书
- 滑雪板用手动磨边器相关项目实施方案
- 牙钻项目可行性实施报告
- 游泳护目镜市场环境与对策分析
- 教育行业心理辅导流程
- 快递公司快递员服务规范手册
- 广告行业品牌推广手册
- 电路测试仪相关项目实施方案
- 国际贸易实务操作指南
- 医院急诊室应对紧急情况的快速反应手册
- 2024中国中煤电力及新能源人才招聘笔试参考题库含答案解析
- 国际标准《风险管理指南》(ISO31000)的中文版
- 骨关节疾病自测表
- 装载机零件目录(以徐工lw500kn为例)
- 导游APP在智慧旅游中的应用研究
- 分数的再认识(一)教学设计
- 华师八上数学-因式分解练习题-华师大
- 水利工程 验收规程PPT课件
- 汽车4S店的涉税风险分析与几个涉税疑难问题处理
- 无损检测Ⅱ级人员超声(UT)锻件门类专业知识试题及详解
- 员工岗位职责说明书
评论
0/150
提交评论