2022-2023学年揭阳真理中学数学九年级上册期末联考试题含解析_第1页
2022-2023学年揭阳真理中学数学九年级上册期末联考试题含解析_第2页
2022-2023学年揭阳真理中学数学九年级上册期末联考试题含解析_第3页
2022-2023学年揭阳真理中学数学九年级上册期末联考试题含解析_第4页
2022-2023学年揭阳真理中学数学九年级上册期末联考试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件2.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n-1 C.()n-1 D.n3.如图,已知在ΔABC中,DE∥BC,则以下式子不正确的是()A. B. C. D.4.用配方法解方程x2-4x+3=0时,原方程应变形为()A.(x+1)2=1 B.(x-1)2=1 C.(x+2)2=1 D.(x-2)2=15.我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是A.10(1+2x)=18.8 B.=10C.=18.8 D.=18.86.在△ABC中,∠C=90°,∠B=30°,则cosA的值是()A. B. C. D.17.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.8.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25° B.40° C.35° D.30°9.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是(

)A. B. C. D.10.某超市一天的收入约为450000元,将450000用科学记数法表示为()A.4.5×106 B.45×105 C.4.5×105 D.0.45×106二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,点A,B,C都在格点上,过A,B,C三点作一圆弧,则圆心的坐标是_____.12.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.13.如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,,的坐标分别为,,,若点横坐标的最小值为0,则点横坐标的最大值为______.14.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.15.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式,则火箭升空的最大高度是___m16.如图,正方形ABCO与正方形ADEF的顶点B、E在反比例函数的图象上,点A、C、D在坐标轴上,则点E的坐标是_____.17.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则不等式ax2<bx+c的解集是______.18.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.三、解答题(共66分)19.(10分)如图,抛物线交轴于、两点,交轴于点,点的坐标为,直线经过点、.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接,当直线与直线的一个夹角等于的3倍时,请直接写出点的坐标.20.(6分)如图,是规格为8×8的正方形网格,请在所给的网格中按下列要求操作.(1)在网格中建立平面直角坐标系,使点的坐标为,点的坐标为.(2)在第二象限内的格点上画一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数.求点的坐标及的周长(结果保留根号).(3)将绕点顺时针旋转90°后得到,以点为位似中心将放大,使放大前后的位似比为1:2,画出放大后的的图形.21.(6分)一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个个球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“宜”的概率为多少?(2)甲同学从中任取一球,记下汉字后放回袋中,然后再从袋中任取一球,请用画树图成列表的方法求出甲同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p甲;(3)乙同学从中任取一球,不放回,再从袋中任取一球,请求出乙同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p乙,并指出p甲、p乙的大小关系.22.(8分)(1)(x-5)2-9=0(2)x2+4x-2=023.(8分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求二次函数的解析式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.24.(8分)如图1,中,,是的中点,平分交于点,在的延长线上且.(1)求证:四边形是平行四边形;(2)如图2若四边形是菱形,连接,,与交于点,连接,在不添加任何辅助线的情况下,请直接写出图2中的所有等边三角形.25.(10分)如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①求t的取值范围.②若使△BPQ为直角三角形,请求出符合条件的t值;③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.26.(10分)如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B.任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C.一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D.“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.2、B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解.【详解】如图作正方形边的垂线,由ASA可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的,即是,n个这样的正方形重叠部分(阴影部分)的面积和为:.故选:B.【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.3、D【分析】由DE∥BC可以推得ΔADE~ΔABC,再由相似三角形的性质出发可以判断各选项的对错.【详解】∵DE∥BC,∴ΔADE~ΔABC,所以有:A、,正确;B、由A得,即,正确;C、,即,正确;D、,即,错误.故选D.【点睛】本题考查三角形相似的判定与性质,根据三角形相似的性质写出有关线段的比例式是解题关键.4、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【详解】移项,得

x2-4x=-3,配方,得

x2-2x+4=-3+4,即(x-2)2=1

,故选:D.【点睛】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.5、C【分析】根据增长率的计算公式:增长前的数量×(1+增长率)增长次数=增长后数量,从而得出答案.【详解】根据题意可得方程为:10(1+x)2=18.8,故选:C.【点睛】本题主要考查的是一元二次方程的应用,属于基础题型.解决这个问题的关键就是明确基本的计算公式.6、A【分析】根据特殊角三角函数值,可得答案.【详解】解:∵△ABC中,∠C=90°,∠B=30°,∴∠A=90°-30°=60°.cosA=cos60°=.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角三角函数值是解题关键.7、D【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.8、C【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.9、A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.10、C【分析】根据科学记数法的表示方法表示即可.【详解】将150000用科学记数法表示为1.5×2.故选:C.【点睛】本题考查科学记数法的表示,关键在于牢记科学记数法的表示方法.二、填空题(每小题3分,共24分)11、(2,1)【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【详解】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,1).故答案为:(2,1).【点睛】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”.12、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件为:∠B=∠P

∵∠PAB=∠QAC,

∴∠PAQ=∠BAC

∵∠B=∠P,

∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.13、7【分析】当点横坐标的最小值为0时,抛物线顶点在C点,据此可求出抛物线的a值,再根据点横坐标的最大值时,顶点在E点,求出此时的抛物线即可求解.【详解】当点横坐标的最小值为0时,抛物线顶点在C点,设该抛物线的解析式为:y=a(x+2)2+8,代入点B(0,0)得:0=a(x+2)2+8,则a=−2,即:B点横坐标取最小值时,抛物线的解析式为:y=-2(x+2)2+8.当A点横坐标取最大值时,抛物线顶点应取E,则此时抛物线的解析式:y=-2(x−8)2+2,令y=0,解得x1=7,x2=9∴点A的横坐标的最大值为7.故答案为7.【点睛】此题主要考查二次函数的平移问题,解题的关键是熟知待定系数法求解解析式.14、40°.【解析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.15、1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h取得最大值,火箭能达到最大高度为1m.故答案为:1.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.16、【分析】设点E的坐标为,根据正方形的性质得出点B的坐标,再将点E、B的坐标代入反比例函数解析式求解即可.【详解】设点E的坐标为,且由图可知则点B的坐标为将点E、B的坐标代入反比例函数解析式得:整理得:解得:或(不符合,舍去)故点E的坐标为.【点睛】本题考查了反比例函数的定义与性质,利用正方形的性质求出点B的坐标是解题关键.17、﹣2<x<1【分析】直接利用函数图象结合其交点坐标得出不等式ax2<bx+c的解集即可;【详解】解:如图所示:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴不等式ax2<bx+c的解集,即一次函数在二次函数图象上方时,得出x的取值范围为:﹣2<x<1.故答案为:﹣2<x<1.【点睛】本题主要考查了二次函数与不等式(组),掌握二次函数的性质和不等式的解是解题的关键.18、74【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.三、解答题(共66分)19、(1);(2),点坐标为;(3)点的坐标为,【分析】(1)利用B(5,0)用待定系数法求抛物线解析式;(2)作PQ∥y轴交BC于Q,根据求解即可;(3)作∠CAN=∠NAM1=∠ACB,则∠AM1B=3∠ACB,则NAM1∽ACM1,通过相似的性质来求点M1的坐标;作AD⊥BC于D,作M1关于AD的对称点M2,则∠AM2C=3∠ACB,根据对称点坐标特点可求M2的坐标.【详解】(1)把代入得.∴;(2)作PQ∥y轴交BC于Q,设点,则∵∴OB=5,∵Q在BC上,∴Q的坐标为(x,x-5),∴PQ==,∴==∴当时,有最大值,最大值为,∴点坐标为.(3)如图1,作∠CAN=∠NAM1=∠ACB,则∠AM1B=3∠ACB,∵∠CAN=∠NAM1,∴AN=CN,∵=-(x-1)(x-5),∴A的坐标为(1,0),C的坐标为(0,-5),设N的坐标为(a,a-5),则∴,∴a=,∴N的坐标为(,),∴AN2==,AC2=26,∴,∵∠NAM1=∠ACB,∠NM1A=∠CM1A,∴NAM1∽ACM1,∴,∴,设M1的坐标为(b,b-5),则∴,∴b1=,b2=6(不合题意,舍去),∴M1的坐标为,如图2,作AD⊥BC于D,作M1关于AD的对称点M2,则∠AM2C=3∠ACB,易知ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=,M2纵坐标=,∴M2的坐标是,综上所述,点M的坐标是或.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.20、(1)图见解析;(2),周长为;(3)图见解析.【分析】(1)根据平面直角坐标系点的特征作图即可得出答案;(2)根据等腰三角形的定义计算即可得出答案;(3)根据旋转和位似的性质即可得出答案.【详解】解:(1)如图所示:(2)∵,∴∴周长为;(3)如图所示,即为所求.【点睛】本题考查的是尺规作图,涉及到了两点间的距离公式以及位似的相关性质,需要熟练掌握.21、(1);(2);(3).【分析】(1)由一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与取出的两个球上的汉字恰能组成“魅力”或“宜昌”的情况,再利用概率公式即可求得答案;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与取出的两个球上的汉字恰能组成“魅力”或“宜昌”的情况,再利用概率公式即可求得答案.【详解】解:(1)从中任取一个球,球上的汉字刚好是“宜”的概率为;(2)列表如下:魅力宜昌魅(魅,魅)(力,魅)(宜,魅)(昌,魅)力(魅,力)(力,力)(宜,力)(昌,力)宜(魅,宜)(力,宜)(宜,宜)(昌,宜)昌(魅,昌)(力,昌)(宜,昌)(昌,昌)所有等可能结果有16种,其中取出的两个球上的汉字恰能组成“魅力”或“宜昌”的有4种结果,所以取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率;(3)列表如下:魅力宜昌魅﹣﹣﹣(力,魅)(宜,魅)(昌,魅)力(魅,力)﹣﹣﹣(宜,力)(昌,力)宜(魅,宜)(力,宜)﹣﹣﹣(昌,宜)昌(魅,昌)(力,昌)(宜,昌)﹣﹣﹣所有等可能的情况有12种,取出的两个球上的汉字恰能组成“魅力”或“宜昌”的有4种结果,所以取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率,所以.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)x=8或x=1;(1)x=-1或x=--1【分析】(1)先移项,利用直接开平方法解方程;

(1)利用配方法解方程即可求解.【详解】解:(1)(x-5)1-9=0(x-5)1=9∴x-5=3或x-5=-3∴x=8或x=1;(1)x1+4x-1=0(x1+4x+4)-6=0(x+1)1=6∴x+1=或x+1=-∴x=-1或x=--1.【点睛】本题考查一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.23、(1);(2);(3)存在,,.【解析】(1)可根据OB、OC的长得出B、C两点的坐标,然后用待定系数法即可求出抛物线的解析式.

(2)可将四边形ACPQ分成直角三角形AOC和直角梯形CQPC两部分来求解.先根据抛物线的解析式求出A点的坐标,即可得出三角形AOC直角边OA的长,据此可根据上面得出的四边形的面积计算方法求出S与m的函数关系式.

(3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,据此可设出N点的坐标,然后用坐标系中两点间的距离公式分别表示出CM、MN、CN的长,然后分三种情况进行讨论:①CM=MN;②CM=CN;③MN=CN.根据上述三种情况即可得出符合条件的N点的坐标.【详解】解:(1)∵,∴,.∴,解得,∴二次函数的解析式为;(2),设直线的解析式为,则有解得∴直线的解析式为∵轴,,∴点的坐标为;(3)线段上存在点,使为等腰三角形.设点坐标为则:,,①当时,解得,(舍去)此时②当时,,解得,(舍去),此时③当时,解得,此时.【点睛】本题考查了二次函数解析式的确定、图形的面积求法、函数图象交点、等腰三角形的判定等知识及综合应用知识、解决问题的能力.考查学生分类讨论、数形结合的数学思想方法.24、(1)详见解析;(2)△ACF、、、【分析】(1)在中,,是的中点,可得,再通过,得证,再通过证明,得证,即可证明四边形BCEF是平行四边形;(2)根据题意,直接写出符合条件的所有等边三角形即可.【详解】(1)证明:∵在中,,是的中点∴,∵,∴,∵平分,∴,∵,∴,∵,∴,∴又∵,∴四边形BCEF是平行四边形;(2)∵四边形是菱形∴,∵∴∴△BCE和△BEF是等边三角形∴∴∵∴∴∴∴∴在△CDE和△CGE中∴∴∴是等边三角形∴∴∴∴∴∴△ACF是等边三角形∴等边三角形有△ACF,,,【点睛】本题考查了几何图形的综合问题,掌握直角三角形的斜边中线定理、平行的性质以及判定定理、平行四边形的性质以及判定、菱形的性质是解题的关键.25、(1);(2)①,②t的值为或,③当t=2时,四边形ACQP的面积有最小值,最小值是.【分析】(1)求出对称轴,再求出y=与抛物线的两个交点坐标,将其代入抛物线的顶点式即可;(2)①先求出A、B、C的坐标,写出OB、OC的长度,再求出BC的长度,由运动速度即可求出t的取值范围;②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,分别证△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;③如图,过点Q作QH⊥x轴于点H,证△BHQ∽△BOC,求出HQ的长,由公式S四边形ACQP=S△ABC-S△BPQ可求出含t的四边形ACQP的面积,通过二次函数的图象及性质可写出结论.【详解】解:(1)∵在抛物线中,当x=﹣1和x=3时,y值相等,∴对称轴为x=1,∵y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M,∴顶点M(1,),另一交点为(6,6),∴可设抛物线的解析式为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论