版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.2.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.3.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°4.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为()A. B. C. D.5.已知集合,则()A. B. C. D.6.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是()A. B.C. D.7.函数的图象与函数的图象的交点横坐标的和为()A. B. C. D.8.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.89.已知(),i为虚数单位,则()A. B.3 C.1 D.510.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分不必要条件11.若集合,,则下列结论正确的是()A. B. C. D.12.函数在上单调递减的充要条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足,且y≥−1,则3x+y的最大值_____14.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=_____,a1+a2+…+a5=____15.设双曲线的一条渐近线方程为,则该双曲线的离心率为____________.16.已知随机变量服从正态分布,若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.18.(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)若点在直线上,求直线的极坐标方程;(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.20.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.21.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.22.(10分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.2、B【解析】
根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题3、C【解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.4、A【解析】
设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.【详解】双曲线的右顶点为,右焦点为,M所在直线为,不妨设,∴MF的中点坐标为.代入方程可得,∴,∴,∴(负值舍去).故选:A.【点睛】本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.5、B【解析】
计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.6、A【解析】
首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点.画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为.故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.7、B【解析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可.【详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.8、B【解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.9、C【解析】
利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.10、A【解析】
试题分析:α⊥β,b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.考点:充分条件、必要条件.11、D【解析】
由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.12、C【解析】
先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,,令,则,故在上恒成立;结合图象可知,,解得故.故选:C.【点睛】本题考查求三角函数单调区间.求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.二、填空题:本题共4小题,每小题5分,共20分。13、5.【解析】
由约束条件作出可行域,令z=3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由题意作出可行域如图阴影部分所示.设,当直线经过点时,取最大值5.故答案为:5【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.14、80211【解析】
由,利用二项式定理即可得,分别令、后,作差即可得.【详解】由题意,则,令,得,令,得,故.故答案为:80,211.【点睛】本题考查了二项式定理的应用,属于中档题.15、【解析】
根据渐近线得到,,计算得到离心率.【详解】,一条渐近线方程为:,故,,.故答案为:.【点睛】本题考查了双曲线的渐近线和离心率,意在考查学生的计算能力.16、0.4【解析】
因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【点睛】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)直接利用极坐标公式计算得到答案(2)设,,根据三角函数的有界性得到答案.【详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【点睛】本题考查了极坐标方程,参数方程,意在考查学生的计算能力和转化能力.18、(1);(2)或【解析】
(1)由椭圆的定义可知,焦点三角形的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出和,从而写出椭圆的方程;(2)设出P、Q两点坐标,由可知点为的重心,根据重心坐标公式可将点用P、Q两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得式.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数的取值范围.【详解】解:(1)由题意知.,直线的方程为∵直线与椭圆的另一个交点的横坐标为解得或(舍去),∴椭圆的方程为(2)设.∴点为的重心,∵点在圆上,由得,代入方程,得,即由得解得.或【点睛】本题考查了椭圆的焦点三角形的周长,标准方程的求解,直线与椭圆的位置关系,其中重心坐标公式、韦达定理的应用是关键.考查了学生的运算能力,属于较难的题.19、(1)(2)【解析】
(1)利用消参法以及点求解出的普通方程,根据极坐标与直角坐标的转化求解出直线的极坐标方程;(2)将的坐标设为,利用点到直线的距离公式结合三角函数的有界性,求解出取最小值时对应的值.【详解】(1)消去参数得普通方程为,将代入,可得,即所以的极坐标方程为(2)的直角坐标方程为直线的直角坐标方程设的直角坐标为∵在直线上,∴的最小值为到直线的距离的最小值∵,∴当,时取得最小值即,∴【点睛】本题考查直线的参数方程、普通方程、极坐标方程的互化以及根据曲线上一点到直线距离的最值求参数,难度一般.(1)直角坐标和极坐标的互化公式:;(2)求解曲线上一点到直线的距离的最值,可优先考虑将点的坐标设为参数方程的形式,然后再去求解.20、(1)元;(2)32家;(3)分布列见解析;【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.21、(1);(2)【解析】
(1)利用正弦定理将边化成角,可得,展开并整理可得,从而可求出角;(2)由余弦定理得,进而可得,由,可求出的值,设边上的高为,可得的面积为,从而可求出.【详解】(1)由题意,由正弦定理得.因为,所以,所以,展开得,整理得.因为,所以,故,即.(2)由余弦定理得,则,得,故,故的面积为.设边上的高为,有,故,所以边上的高为.【点睛】本题考查正弦、余弦定理在解三角形中的应用,考查三角形的面积公式的应用,考查学生的计算求解能力,属于中档题.22、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度影视制作设备租赁合同
- 大学求职课程设计总结
- 2024拌合站租赁合同(范本)
- 2024年新建住宅混凝土地面施工合同
- 大单元教学起始课程设计
- java web网上订餐系统课程设计
- 公司管理系统课程设计
- 安徽大学《网络GS实验》2023-2024学年第一学期期末试卷
- 基于mfc的vc 课程设计
- 2024园林景观综合施工合同2篇
- 南京信息工程大学《自然语言处理》2023-2024学年期末试卷
- 临沂大学《信息可视化设计》2021-2022学年第一学期期末试卷
- 绿色建材应用
- 2024年糖尿病小组工作总结
- 五年级上册心理健康课件《8.处事灵活能变通》
- 质量保证体系及措施
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)英语试卷(含标准答案)
- 四年级上册语文第六单元任务群教学设计
- 《高血压科普知识》课件
- 江苏省南京市秦淮外国语学校2023-2024学年六年级上学期月考英语试卷(12月份)
- 5.17 中国工农红军长征 课件 2024-2025学年统编版八年级历史上册
评论
0/150
提交评论