2023学年上海师大附中高考数学五模试卷(含解析)_第1页
2023学年上海师大附中高考数学五模试卷(含解析)_第2页
2023学年上海师大附中高考数学五模试卷(含解析)_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.2.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.13.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B.C. D.4.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.295.已知,则()A. B. C. D.6.函数的图像大致为().A. B.C. D.7.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.8.已知是等差数列的前项和,若,,则()A.5 B.10 C.15 D.209.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.10.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.11.已知,满足约束条件,则的最大值为A. B. C. D.12.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.14.若关于的不等式在上恒成立,则的最大值为__________.15.的展开式中项的系数为_______.16.电影《厉害了,我的国》于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.18.(12分)已知直线的参数方程:(为参数)和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)已知点,直线与圆相交于、两点,求的值.19.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.20.(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.21.(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.22.(10分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】

由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【题目详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【答案点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.2、B【答案解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【答案点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.3、B【答案解析】

甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.4、D【答案解析】

由可求,再求公差,再求解即可.【题目详解】解:是等差数列,又,公差为,,故选:D【答案点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.5、B【答案解析】

利用诱导公式以及同角三角函数基本关系式化简求解即可.【题目详解】,本题正确选项:【答案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.6、A【答案解析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【题目详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【答案点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.7、A【答案解析】

化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【题目详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【答案点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。8、C【答案解析】

利用等差通项,设出和,然后,直接求解即可【题目详解】令,则,,∴,,∴.【答案点睛】本题考查等差数列的求和问题,属于基础题9、A【答案解析】

,从而可得,,再解不等式即可.【题目详解】由已知,,所以,,由,解得,.故选:A.【答案点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.10、D【答案解析】

利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【题目详解】是偶函数,,而,因为在上递减,,即.故选:D【答案点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.11、D【答案解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【题目详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【答案点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.12、B【答案解析】

,选B.二、填空题:本题共4小题,每小题5分,共20分。13、164【答案解析】

只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【题目详解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;则a4=+2+=5+8+3=16.故答案为:16,4.【答案点睛】本题主要考查了多项式展开中的特定项的求解,可以用赋值法也可以用二项展开的通项公式求解,属于中档题.14、【答案解析】

分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数最小值,化简得,构造放缩函数对自变量再研究,可解,【题目详解】令;当时,,不合题意;当时,,令,得或,所以在区间和上单调递减.因为,且在区间上单调递增,所以在处取极小值,即最小值为.若,,则,即.当时,,当时,则.设,则.当时,;当时,,所以在上单调递增;在上单调递减,所以,即,所以的最大值为.故答案为:【答案点睛】本题考查不等式恒成立问题.不等式恒成立问题的求解思路:已知不等式(为实参数)对任意的恒成立,求参数的取值范围.利用导数解决此类问题可以运用分离参数法;如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(,或,)求解.15、40【答案解析】

根据二项定理展开式,求得r的值,进而求得系数.【题目详解】根据二项定理展开式的通项式得所以,解得所以系数【答案点睛】本题考查了二项式定理的简单应用,属于基础题.16、A或D【答案解析】

分别假设每一个人一半是对的,然后分别进行验证即可.【题目详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是.故第4个盒子里面放的电影票为或.故答案为:或【答案点睛】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)详见解析.【答案解析】

(Ⅰ),,两式相减化简整理利用等比数列的通项公式即可得出.(Ⅱ)由题设可得,可得,利用错位相减法即可得出.【题目详解】解:(Ⅰ)因为,故,两式相减可得,,故,因为是等比数列,∴,又,所以,故,所以;(Ⅱ)由题设可得,所以,所以,①则,②①-②得:,所以,得证.【答案点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18、(1):,:;(2)【答案解析】

(1)消去参数求得直线的普通方程,将两边同乘以,化简求得圆的直角坐标方程.(2)求得直线的标准参数方程,代入圆的直角坐标方程,化简后写出韦达定理,根据直线参数的几何意义,求得的值.【题目详解】(1)消去参数,得直线的普通方程为,将两边同乘以得,,∴圆的直角坐标方程为;(2)经检验点在直线上,可转化为①,将①式代入圆的直角坐标方程为得,化简得,设是方程的两根,则,,∵,∴与同号,由的几何意义得.【答案点睛】本小题主要考查参数方程化为普通方程、极坐标方程化为直角坐标方程,考查利用直线参数的几何意义求解距离问题,属于中档题.19、(1),;(2).【答案解析】

(1)在曲线的参数方程中消去参数,可得出曲线的普通方程,将曲线的极坐标方程变形为,进而可得出曲线的直角坐标方程;(2)求出点到直线的最大距离,以及直线截圆所得弦长,利用三角形的面积公式可求得面积的最大值.【题目详解】(1)由曲线的参数方程得,.所以,曲线的普通方程为,将曲线的极坐标方程变形为,所以,曲线的直角坐标方程为;(2)曲线是圆心为,半径为为圆,圆心到直线的距离为,所以,点到直线的最大距离为,,因此,的面积为最大值为.【答案点睛】本题考查曲线的参数方程、极坐标方程与普通方程之间的相互转换,同时也考查了直线截圆所形成的三角形面积最值的计算,考查计算能力,属于中等题.20、(1)(2)【答案解析】

(1)把f(x)去绝对值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论.(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值.【题目详解】(1)时,.当时,即为,解得.当时,,解得.当时,,解得.综上,的解集为.(2).,由的图象知,,.【答案点睛】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题21、(1)见解析;(2).【答案解析】

(1)分两种情况讨论:①两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;②两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论