2023学年山东省宁阳市高考考前提分数学仿真卷(含解析)_第1页
2023学年山东省宁阳市高考考前提分数学仿真卷(含解析)_第2页
2023学年山东省宁阳市高考考前提分数学仿真卷(含解析)_第3页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在R上的函数y=fx满足fx≤2x-1A. B. C. D.2.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A. B.C. D.3.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.4.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.5.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2 B. C. D.36.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关7.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()A.8 B.7 C.6 D.48.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A. B.6 C. D.9.在中,,,,则边上的高为()A. B.2 C. D.10.在函数:①;②;③;④中,最小正周期为的所有函数为()A.①②③ B.①③④ C.②④ D.①③11.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.12.函数的大致图像为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中的系数为,则_______.14.已知是函数的极大值点,则的取值范围是____________.15.已知函数()在区间上的值小于0恒成立,则的取值范围是________.16.若方程有两个不等实根,则实数的取值范围是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为;(Ⅰ)求椭圆的标准方程;(Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围.18.(12分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望.19.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.22.(10分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求直线的极坐标方程;(2)若直线与曲线交于,两点,求的面积.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】

根据y=fx+1为奇函数,得到函数关于1,0中心对称,排除AB,计算f1.5≤【题目详解】y=fx+1为奇函数,即fx+1=-f-x+1,函数关于f1.5≤2故选:D.【答案点睛】本题考查了函数图像的识别,确定函数关于1,0中心对称是解题的关键.2、D【答案解析】

由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【题目详解】由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,∴,即,∴,∴数列是以为公比的等比数列,而,所以,∴当时,,故选:D.【答案点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.3、B【答案解析】

由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【题目详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【答案点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.4、C【答案解析】

根据程序框图依次计算得到答案.【题目详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【答案点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.5、A【答案解析】

分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值.详解:由①得到,,故①无解,所以直线与抛物线是相离的.由,而为到准线的距离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.6、B【答案解析】

根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【题目详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【答案点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.7、A【答案解析】

则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【题目详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【答案点睛】本小题主要考查正方体有关计算,属于基础题.8、D【答案解析】

用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【题目详解】执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D.【答案点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.9、C【答案解析】

结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【题目详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【答案点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.10、A【答案解析】逐一考查所给的函数:,该函数为偶函数,周期;将函数图象x轴下方的图象向上翻折即可得到的图象,该函数的周期为;函数的最小正周期为;函数的最小正周期为;综上可得最小正周期为的所有函数为①②③.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.11、D【答案解析】

讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【题目详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【答案点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.12、D【答案解析】

通过取特殊值逐项排除即可得到正确结果.【题目详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【答案点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【答案解析】

首先求出的展开项中的系数,然后根据系数为即可求出的取值.【题目详解】由题知,当时有,解得.故答案为:.【答案点睛】本题主要考查了二项式展开项的系数,属于简单题.14、【答案解析】

方法一:令,则,,当,时,,单调递减,∴时,,,且,∴在上单调递增,时,,,且,∴在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,,所以,这与是函数的极大值点矛盾.综上,.方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得.15、【答案解析】

首先根据的取值范围,求得的取值范围,由此求得函数的值域,结合区间上的值小于0恒成立列不等式组,解不等式组求得的取值范围.【题目详解】由于,所以,由于区间上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范围是.故答案为:【答案点睛】本小题主要考查三角函数值域的求法,考查三角函数值恒小于零的问题的求解,考查化归与转化的数学思想方法,属于中档题.16、【答案解析】

由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),.【答案解析】

(Ⅰ)由题意可得,的坐标,结合椭圆离心率,及隐含条件列式求得,的值,则椭圆方程可求;(Ⅱ)设直线,求得的坐标,再设直线,求出点的坐标,写出的方程,联立与,可求出的坐标,由,可得关于的函数式,由单调性可得取值范围.【题目详解】(Ⅰ),,,,,由,得,又,,解得:,,.椭圆的标准方程为;(Ⅱ)设直线,则与直线的交点,又,设直线,联立,消可得.解得,,联立,得,,直线,联立,解得,,,,,,,,函数在上单调递增,,.【答案点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.18、(1)(2)见解析,【答案解析】

(1)采用分层抽样的方法甲组抽取4人,乙组抽取3人,丙组抽取2人,丁组抽取3人,从参加问卷调查的12名学生中随机抽取2人,基本事件总数为,这两人来自同一小组取法共有,由此可求出所求的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,而甲、丙两个小组学生分别有4人和2人,所以抽取的两人中是甲组的学生的人数的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.【题目详解】(1)由题设易得,问卷调查从四个小组中抽取的人数分别为4,3,2,3(人),从参加问卷调查的12名学生中随机抽取两名的取法共有(种),抽取的两名学生来自同一小组的取法共有(种),所以,抽取的两名学生来自同一个小组的概率为(2)由(1)知,在参加问卷调查的12名学生中,来自甲、丙两小组的学生人数分别为4人、2人,所以,抽取的两人中是甲组的学生的人数的可能取值为0,1,2,因为所以随机变量的分布列为:012所求的期望为【答案点睛】此题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查分层抽样、古典概型、排列组合等知识,考查运算能力,属于中档题.19、(1);(2)【答案解析】

(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即得解.【题目详解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于为的重心故,∴解得或舍∴的面积为.【答案点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.20、(1);(2)【答案解析】

方案一:(1)根据等差数列的通项公式及前n项和公式列方程组,求出和,从而写出数列的通项公式;(2)由第(1)题的结论,写出数列的通项,采用分组求和、等比求和公式以及裂项相消法,求出数列的前项和.其余两个方案与方案一的解法相近似.【题目详解】解:方案一:(1)∵数列都是等差数列,且,,解得,综上(2)由(1)得:方案二:(1)∵数列都是等差数列,且,解得,.综上,(2)同方案一方案三:(1)∵数列都是等差数列,且.,解得,,.综上,(2)同方案一【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论