




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.2.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4- B.4- C.8- D.8-3.如图,从左边的等边三角形到右边的等边三角形,经过下列一次变化不能得到的是()A.轴对称 B.平移 C.绕某点旋转 D.先平移再轴对称4.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A. B. C. D.无法确定5.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C.且 D.且6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手
甲
乙
丙
丁
平均数(环)
9.2
9.2
9.2
9.2
方差(环2)
0.035
0.015
0.025
0.027
则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁7.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A. B. C. D.18.比较cos10°、cos20°、cos30°、cos40°大小,其中值最大的是()A.cos10° B.cos20° C.cos30° D.cos40°9.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是()A. B. C. D.10.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,OD=3,则AB的长为()A.8 B.6 C.4 D.311.如图,⊙O的弦CD与直径AB交于点P,PB=1cm,AP=5cm,∠APC=30°,则弦CD的长为()A.4cm B.5cm C.cm D.cm12.二次函数的图象与轴的交点个数是()A.2个 B.1个 C.0个 D.不能确定二、填空题(每题4分,共24分)13.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.14.已知且为锐角,则_____.15.若关于x的一元二次方程有两个相等的实数根,则m的值为_________.16.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有_____个.17.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.18.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)
三、解答题(共78分)19.(8分)如图,己知是的直径,切于点,过点作于点,交于点,连接、.(1)求证:是的切线:(2)若,,求阴影部分面积.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.21.(8分)计算(1)(2)(3)(4)22.(10分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点,点和点的坐标;(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;(3)若点是直线下方抛物线上一动点,运动到何处时四边形面积最大,最大值面积是多少?23.(10分)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:使用次数05101520人数11431(1)这10位居民一周内使用共享单车次数的中位数是次,众数是次.(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是.(填“中位数”,“众数”或“平均数”)(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.24.(10分)用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18m(1)若围成的面积为72m2,球矩形的长与宽;(2)菜园的面积能否为120m2,为什么?25.(12分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.26.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.
参考答案一、选择题(每题4分,共48分)1、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2、B【解析】试题解析:连接AD,
∵BC是切线,点D是切点,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF=,
S△ABC=AD•BC=×2×4=4,
∴S阴影部分=S△ABC-S扇形AEF=4-π.3、A【分析】根据对称,平移和旋转的定义,结合等边三角形的性质分析即可.【详解】解:从左边的等边三角形到右边的等边三角形,可以利用平移或绕某点旋转或先平移再轴对称,只轴对称得不到,故选:A.【点睛】本题考查了图形的变换:旋转、平移和对称,等边三角形的性质,掌握图形的变换是解题的关键.4、C【分析】根据概率P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【详解】以自由转动的转盘,被分成了6个相同的扇形,白色区域有4个,因此=,故选:C.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的求解方法.5、D【分析】根据二次项系数不等于0,且∆>0列式求解即可.【详解】由题意得k-1≠0,且4-4(k-1)>0,解得且.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.6、B【解析】在平均数相同时方差越小则数据波动越小说明数据越稳定,7、B【分析】根据网格结构找出∠ABC所在的直角三角形,然后根据锐角的正切等于对边比邻边列式即可.【详解】解:∠ABC所在的直角三角形的对边是3,邻边是4,所以,tan∠ABC=.故选B.【点睛】本题考查了锐角三角函数的定义,熟练掌握网格结构找出直角三角形是解题的关键.8、A【解析】根据同名三角函数大小的比较方法比较即可.【详解】∵,∴.故选:A.【点睛】本题考查了同名三角函数大小的比较方法,熟记锐角的正弦、正切值随角度的增大而增大;锐角的余弦、余切值随角度的增大而减小.9、D【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【详解】解:旋转角是故选:D.【点睛】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.10、A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD=∴AB=2BD=1.故选:A.【点睛】本题主要考查的是圆中的垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”,掌握垂径定理是解此题的关键.11、D【分析】作OH⊥CD于H,连接OC,如图,先计算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三边的关系得到OH=1,则可根据勾股定理计算出CH,然后根据垂径定理得到CH=DH,从而得到CD的长.【详解】解:作OH⊥CD于H,连接OC,如图,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故选:D.【点睛】本题考查了含30度角的直角三角形的性质、勾股定理以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.12、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数.【详解】由二次函数,
知
∴.∴抛物线与轴有二个公共点.
故选:A.【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数取决于的值.二、填空题(每题4分,共24分)13、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.14、2【分析】根据特殊角的三角函数值,先求出,然后代入计算,即可得到答案.【详解】解:∵,为锐角,∴,∴;∴====;故答案为:2.【点睛】本题考查了特殊角的三角函数值,二次根式的性质,负整数指数幂,零次幂,解题的关键是正确求出,熟练掌握运算法则进行计算.15、0【分析】根据一元二次方程根的判别式的正负判断即可.【详解】解:原方程可变形为,由题意可得所以故答案为:0【点睛】本题考查了一元二次方程,掌握根的判别式与一元二次方程的根的情况是解题的关键.16、1【分析】根据口袋中有3个白球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:∵通过大量重复摸球试验后发现,摸到红球的频率是0.1,口袋中有3个白球,∵假设有x个红球,∴,解得:x=1,经检验x=1是方程的根,∴口袋中有红球约有1个.故答案为:1.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.17、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.18、或【解析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.三、解答题(共78分)19、(1)证明见解析;(2)【分析】(1)连结,由半径相等得到∠OBC=∠OCB,由垂径定理可知是的垂直平分线,得到PB=PC,因此∠PBC=∠PCB,从而可以得到∠PCO=90°,即可得证;(2)阴影部分的面积即为扇形OAC的面积减去△OAC的面积,通过,,利用扇形面积公式和三角形计算公式计算即可.【详解】(1)证明:连结,如图∵∴又∵为圆的直径,切圆于点∴,又∵∴∴是的垂直平分线∴,,即∴是圆的切线(2)由(1)知、为圆的切线∴∵,∴,又∵为圆的直径∴∴,∴,∴【点睛】本题考查了切线的判定和扇形面积公式的应用,理解弓形面积为扇形面积与三角形面积之差是解题的关键.20、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,则FO=,故图中阴影部分的面积为:.【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.21、(1);(2);(3);(4)3【分析】(1)先运用去括号原则以及完全平方差公式去括号,再合并同类项,最后利用因式分解法求解即可;(2)先运用完全平方差公式去括号,再移项和合并同类项,最后利用因式分解法求解即可;(3)由题意代入特殊三角函数值,并利用二次根式运算法则进行计算;(4)由题意代入特殊三角函数值,并利用二次根式运算法则以及负指数幂和去绝对值的运算方法进行计算.【详解】解:(1)解为:;(2)解为:;(3)===;(4)===3.【点睛】本题考查一元二次方程的解法和实数的计算,用到的知识点是因式分解法求一元二次方程和负整数指数幂、零指数幂和特殊角的三角函数值,关键是根据式子的特点灵活运用解方程的方法进行求解.22、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(,);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函数解析式,即可求解;
(1)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.
(3)过点M作MN⊥x轴与点N,设点M(x,x1+x-1),则AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根据S四边形ABCM=S△AOM+S△OCM+S△BOC构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由y=0,得x1+x﹣1=0解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)连接AC与对称轴的交点即为点P.设直线AC为y=kx+b,则,得k=﹣l,∴y=﹣x﹣1.对称轴为x=,当x=时,y=-()﹣1=,∴P(,).(3)过点M作MN丄x轴与点N,设点M(x,x1+x﹣1),则OA=1,ON=﹣x,OB=1,OC=1,MN=﹣(x1+x﹣1)=﹣x1﹣x+1,S四边形ABCM=S△AOM+S△OCM+S△BOC=×1×(﹣x1﹣x+1)+×1(﹣x)+×1×1=﹣x1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴当x=﹣1时,S四边形ABCM的最大值为2.∴点M坐标为(﹣1,﹣1)时,S四边形ABCM的最大值为2.【点睛】本题考查二次函数综合题、待定系数法、两点之间线段最短、最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决在性质问题,学会构建二次函数解决最值问题.23、(1)10,10;(2)中位数和众数;(3)22000【分析】(1)根据众数、中位数和平均数的定义分别求解可得;
(2)由中位数和众数不受极端值影响可得答案;
(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是:(次),根据使用次数可得:众数为10次;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,
故答案为:中位数和众数;(3)平均数为(次),(次)估计该小区居民一周内使用共享单车的总次数为22000次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.24、(1)矩形的长为12米,宽为6米;(2)面积不能为120平方米,理由见解析【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【详解】解:(1)设垂直于墙的一边长为x米,则x(30﹣2x)=72,解方程得:x1=3,x2=12.当x=3时,长=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程求解.25、(1)见解析(2)【分析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省济南市莱芜区市级名校2024-2025学年初三年级第一次质量检测试题物理试题含解析
- 二手房屋交易定金合同范本
- 济宁市金乡县2025年数学四年级第二学期期末预测试题含解析
- 应收账款质押合同
- 特许经营合同与市场监管
- 2025年海南省保亭黎族苗族自治县中考三模道德与法治试题(含答案)
- 健身房转让协议
- 幼儿舞蹈表演形式
- 影视后期特效项目教程课件 项目1 不忘初心青春无悔
- 第三章第三节海陆变迁 教学设计-2024-2025学年湘教版七年级地理上册
- 律师聘用合同证书协议书
- 鼻窦手术后护理查房
- HIV阳性孕产妇全程管理专家共识(2024年版)解读
- 2024年上海客运驾驶员从业资格证考试
- 2024年资格考试-良好农业规范认证检查员考试近5年真题集锦(频考类试题)带答案
- 混凝土结构后锚固技术规程
- 食材配送服务方案投标方案(技术方案)
- DLT 5285-2018 输变电工程架空导线(800mm以下)及地线液压压接工艺规程
- 2024五保户集中供养协议书
- 北京海淀区2023-2024学年八年级物理下学期期中考试卷
- 耳穴临床应用-运动恢复新技巧
评论
0/150
提交评论