2022年内蒙古开来中学九年级数学第一学期期末学业水平测试试题含解析_第1页
2022年内蒙古开来中学九年级数学第一学期期末学业水平测试试题含解析_第2页
2022年内蒙古开来中学九年级数学第一学期期末学业水平测试试题含解析_第3页
2022年内蒙古开来中学九年级数学第一学期期末学业水平测试试题含解析_第4页
2022年内蒙古开来中学九年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B. C. D.22.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(

)A. B. C. D.3.如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A.米 B.米 C.米 D.米4.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.85.如图,在Rt△ABC中,AC=6,AB=10,则sinA的值()A. B. C. D.6.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.7.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110° B.120° C.150° D.160°9.如图,线段OA=2,且OA与x轴的夹角为45°,将点A绕坐标原点O逆时针旋转105°后得到点,则的坐标为()A. B. C. D.10.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=315二、填空题(每小题3分,共24分)11.已知关于x的一元二次方程x2+px-3=0的一个根为-3,则它的另一根为________.12.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.13.如图,在小孔成像问题中,小孔O到物体AB的距离是60cm,小孔O到像CD的距离是30cm,若物体AB的长为16cm,则像CD的长是_____cm.14.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是_____.15.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.16.比较sin30°、sin45°的大小,并用“<”连接为_____.17.在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为______.18.如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为_____.三、解答题(共66分)19.(10分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?20.(6分)如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED.21.(6分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.22.(8分)有这样一个问题,如图1,在等边中,,为的中点,,分别是边,上的动点,且,若,试求的长.爱钻研的小峰同学发现,可以通过几何与函数相结合的方法来解决这个问题,下面是他的探究思路,请帮他补充完整.(1)注意到为等边三角形,且,可得,于是可证,进而可得,注意到为中点,,因此和满足的等量关系为______.(2)设,,则的取值范围是______.结合(1)中的关系求与的函数关系.(3)在平面直角坐标系中,根据已有的经验画出与的函数图象,请在图2中完成画图.(4)回到原问题,要使,即为,利用(3)中的图象,通过测量,可以得到原问题的近似解为______(精确到0.1)23.(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?24.(8分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形,将矩形绕点按顺时针方向旋转,当落在CD上时停止转动,旋转后的矩形记为矩形,设旋转角为,求的值.25.(10分)如图,在某建筑物上,挂着“缘分天注定,悠然在潜山”的宣传条幅,小明站在点处,看条幅顶端,测得仰角为,再往条幅方向前行30米到达点处,看到条幅顶端,测得仰角为,求宣传条幅的长.(注:不计小明的身高,结果精确到1米,参考数据,)26.(10分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角为,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角为,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.

参考答案一、选择题(每小题3分,共30分)1、A【详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD为直径,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故选A.2、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、A【详解】解:由题意,在Rt△ABC中,∠ABC=31°,由三角函数关系可知,

AC=AB•sinα=9sin31°(米).

故选A.【点睛】本题主要考查了三角函数关系在直角三角形中的应用.4、C【解析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.5、A【分析】根据勾股定理得出BC的长,再根据sinA=代值计算即可.【详解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故选:A.【点睛】本题考查勾股定理及正弦的定义,熟练掌握正弦的表示是解题的关键.6、C【分析】根据中心对称图形和轴对称图形的定义逐项进行判断即可.【详解】A、是中心对称图形,但不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、既是中心对称图形,又是轴对称图形,符合题意;D、既不是中心对称图形,也不是轴对称图形,故不符合题意.故选:C.【点睛】本题考查中心对称图形和轴对称图形的定义,熟练掌握定义是关键.7、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点8、A【解析】设C′D′与BC交于点E,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=11°,∴∠1=∠BED′=110°.故选A.9、C【分析】如图所示,过作⊥y轴于点B,作⊥x轴于点C,根据旋转的性质得出,,从而得出,利用锐角三角函数解出CO与OB即可解答.【详解】解:如图所示,过作⊥y轴于点B,作⊥x轴于点C,由旋转可知,,,∵AO与x轴的夹角为45°,∴∠AOB=45°,∴,∴,,∴,故选:C.【点睛】本题考查了旋转的性质以及解直角三角形,解题的关键是得出,并熟悉锐角三角函数的定义及应用.10、B【解析】试题分析:根据题意,设设每次降价的百分率为x,可列方程为560(1-x)²=315.故选B二、填空题(每小题3分,共24分)11、1【分析】根据根与系数的关系得出−3x=−6,求出即可.【详解】设方程的另一个根为x,则根据根与系数的关系得:−3x=−3,解得:x=1,故答案为:1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.12、3.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路线长为3.故答案为:3.【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.13、8【解析】根据相似三角形的性质即可解题.【详解】解:由小孔成像的特征可知,△OAB∽△OCD,由相似三角形的性质可知:对应高比=相似比=对应边的比,∴30:60=CD:16,解得:CD=8cm.【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉性质内容是解题关键.14、【解析】从数﹣2,﹣,1,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,由题意可知正比例函数y=kx的图象经过第三、第一象限,即可得到k=mn>1.由树状图可知符合mn>1的情况共有2种,因此正比例函数y=kx的图象经过第三、第一象限的概率是.故答案为.15、3.【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=3°,∴∠C=∠A=3°.故答案为3.考点:3.切线的性质;3.平行四边形的性质.16、<.【解析】直接利用特殊角的三角函数值代入求出答案.【详解】解:∵sin30°=12、sin45°=22,

∴sin30°<sin45°.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,∵为边作第一个等边三角形,∴BO=1,过B作x轴的垂线交x轴于点D,由可得,即,∴,,即B的横轴坐标为,∵与轴平行,∴将代入分别两个解析式可以求出,∵,∴,即相邻两个三角形的相似比为2,∴第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.18、2.1【分析】由条件可证出DE=EC,证明△AED∽△ACB,利用对应边成比例的知识,可求出DE长.【详解】∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC,设DE=x,则AE=1﹣x,∵DE∥BC,∴△AED∽△ACB,∴,即,∴x=2.1.故答案为:2.1.【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据相似三角形找到对应线段成比例.三、解答题(共66分)19、(20+17)cm.【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠BAD=20cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2=20+17(cm).答:此时灯罩顶端C到桌面的高度CE是(20+17)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF的长是解题的关键.20、电视塔的高度为12米.【分析】作AH⊥ED交FC于点G,交ED于H;把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例列出方程,解方程即可.【详解】解:过A点作AH⊥ED,交FC于G,交ED于H.由题意可得:△AFG∽△AEH,AG=BC=1米,GH=CD=6米,HD=CG=AB=1.1米,∴AH=AG+GH=7米,FG=FC-CG=1.1米∴=即=,解得:EH=10.1.∴ED=EH+HD=10.1+1.1=12(米).∴电视塔的高度为12米.【点睛】此题考查的是相似三角形的应用,掌握构造相似三角形的方法和相似三角形的判定及性质是解决此题的关键.21、(1)见解析;(2)不公平,理由见解析【解析】(1)利用枚举法解决问题即可;(2)求出数字之和为奇数的概率,数字之和为偶数的概率即可判断.【详解】(1)由题设可知,所有可能出现的结果如下:,,,,,,,,共9种;(2)两人各抽一次卡片,卡片上数字之和为奇数有4种可能,所以(甲赢);卡片上数字之和为偶数有5种可能,所以(乙赢).∵,∴乙赢的可能性大一些,故这个游戏不公平.【点睛】本题考查游戏公平性,概率等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1);(2),;(3)答案见解析;(4)1.1.【分析】(1)利用相似三角形的性质即可解决问题.

(2)求出当点F与点A重合时BE的值即可判断x的取值范围.

(3)利用描点法画出函数图象即可.

(4)画出两个函数图象,量出点P的横坐标即可解决问题.【详解】解:(1)由,可得,∵,∴.故答案为:(2)由题意:.∵由,可得,∵,,.∴,∴.故答案为:;.(3)函数图象如图所示:(4)观察图象可知两个函数的交点P的横坐标约为1.1,故BE=1.1

故答案为1.1.【点睛】本题属于一次函数综合题,考查了相似三角形的判定和性质,函数图象等知识,学会利用图象法解决问题是解题的关键.23、(1)6;(2)40或400【分析】(1)设通道的宽x米,由图中所示可得通道面积为2×28x+2(52-2x)x,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a元,则少租出个车位,根据月租金收入为14400元列方程求出a值即可.【详解】(1)设通道的宽x米,根据题意得:2×28x+2(52-2x)x+640=52×28,整理得:x2-40x+204=0,解得:x1=6,x2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a元,则少租出个车位,根据题意得:(200+a)(64-)=14400,整理得:a2-440a+16000=0,解得:a1=40,a2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.24、(1);(2)矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)【解析】分析:(1)根据已知,由直角三角形的性质可知AB=2,从而求得AD,CD,利用中位线的性质可得EF,DF,利用三角函数可得GF,由矩形的面积公式可得结果;(2)首先利用分类讨论的思想,分析当矩形与△CBD重叠部分为三角形时(0<x≤),利用三角函数和三角形的面积公式可得结果;当矩形与△CBD重叠部分为直角梯形时(<x≤),列出方程解得x;(3)作H2Q⊥AB于Q,设DQ=m,则H2Q=m,又DG1=,H2G1=,利用勾股定理可得m,在Rt△QH2G1中,利用三角函数解得cosα.详解:(1)如图①,在中,∠ACB=90°,∠B=30°,AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论