版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,将Rt△ABC绕直角顶点A,沿顺时针方向旋转后得到Rt△AB1C1,当点B1恰好落在斜边BC的中点时,则∠B1AC=()A.25° B.30° C.40° D.60°2.若,相似比为1:2,则与的面积的比为()A.1:2 B.2:1 C.1:4 D.4:13.下列说法中,正确的个数()①位似图形都相似:②两个等边三角形一定是位似图形;③两个相似多边形的面积比为5:1.则周长的比为5:1;④两个大小不相等的圆一定是位似图形.A.1个 B.2个 C.3个 D.4个4.下列一元二次方程中,没有实数根的是().A. B.C. D.5.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b26.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.7.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为()A. B. C. D.8.如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.59.下列说法中,不正确的是()A.所有的菱形都相似 B.所有的正方形都相似C.所有的等边三角形都相似 D.有一个角是100°的两个等腰三角形相似10.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{1,﹣3}=1,则max{x2+2x+3,﹣2x+8}的最小值是_____.12.如图所示,一个质地均匀的小正方体有六个面,小明要给这六个面分别涂上红色、黄色和蓝色三种颜色.在桌面上掷这个小正方体,要使事件“红色朝上”的概率为,那么需要把__________个面涂为红色.13.如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是___________.14.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与轴、轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。15.二次函数y=2x2﹣5kx﹣3的图象经过点M(﹣2,10),则k=_____.16.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。17.抛物线y=x2–6x+5的顶点坐标为__________.18.如图,在⊙O中,∠AOB=60°,则∠ACB=____度.三、解答题(共66分)19.(10分)某商城销售一种进价为10元1件的饰品,经调查发现,该饰品的销售量(件)与销售单价(元)满足函数,设销售这种饰品每天的利润为(元).(1)求与之间的函数表达式;(2)当销售单价定为多少元时,该商城获利最大?最大利润为多少?(3)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,该商城应将销售单价定为多少?20.(6分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.21.(6分)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的销售价p(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示设第x天的日销售额为w(单位:元)(1)第11天的日销售额w为元;(2)观察图象,求当16≤x≤20时,日销售额w与上市时间x之间的函数关系式及w的最大值;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的销售价p元千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?22.(8分)在平面直角坐标系中,已知,.(1)如图1,求的值.(2)把绕着点顺时针旋转,点、旋转后对应的点分别为、.①当恰好落在的延长线上时,如图2,求出点、的坐标.②若点是的中点,点是线段上的动点,如图3,在旋转过程中,请直接写出线段长的取值范围.23.(8分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,请求出球的半径.24.(8分)解一元二次方程(1)(2)25.(10分)如图,点是反比例函数上一点,过点作轴于点,点为轴上一点,连接.(1)求反比例函数的解析式;(2)求的面积.26.(10分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据直角三角形斜边上的中线性质得AB1=BB1,再根据旋转的性质得AB1=AB,旋转角等于∠BAB1,则可判断△ABB1为等边三角形,所以∠BAB1=60°,从而得出结论.【详解】解:∵点B1为斜边BC的中点,∴AB1=BB1,∵△ABC绕直角顶点A顺时针旋转到△AB1C1的位置,∴AB1=AB,旋转角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1为等边三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣60°=30°.故选:B.【点睛】本题主要考察旋转的性质,解题关键是判断出△ABB1为等边三角形.2、C【解析】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵,相似比为1:2,∴与的面积的比为1:4.故选C.考点:相似三角形的性质.3、B【分析】根据位似图形的定义(如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.)分别对①②④进行判断,根据相似多边形的面积比等于相似比的平方,周长比等于相似比对③进行判断.【详解】解:①位似图形都相似,故该选项正确;②两个等边三角形不一定是位似图形,故该选项错误;③两个相似多边形的面积比为5:1.则周长的比为,故该选项错误;④两个大小不相等的圆一定是位似图形,故该选项正确.正确的是①和④,有两个,故选:B【点睛】本题考查的是位似图形、相似多边形性质,掌握位似图形的定义、相似多边形的性质定理是解决此题的关键.4、D【分析】分别计算出每个方程的判别式即可判断.【详解】A、∵△=4-4×1×0=4>0,∴方程有两个不相等的实数根,故本选项不符合题意;B、∵△=16-4×1×(-1)=20>0,∴方程有两个不相等的实数根,故本选项不符合题意;C、∵△=25-4×3×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、∵△=16-4×2×3=-8<0,∴方程没有实数根,故本选项正确;故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5、B【解析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式6、A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7、C【分析】先证明△ABD为等边三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,从而求出BC和BD的比值,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到上部圆锥的侧面积.【详解】解:∵∠A=60°,AB=AD,
∴△ABD为等边三角形,
∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,
∴∠CBD=30°,而CB=CD,
∴△CBD为底角为30°的等腰三角形,过点C作CE⊥BD于点E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,
∴下面圆锥的侧面积=.
故选:C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.8、B【解析】如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【详解】解:如图,连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3,故选B.【点睛】本题考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.9、A【分析】根据相似多边形的定义,即可得到答案.【详解】解:A、所有的菱形都相似,错误;B、所有的正方形都相似,正确;C、所有的等边三角形都相似,正确;D、有一个角是100°的两个等腰三角形相似,正确;故选:A.【点睛】本题考查了相似多边形的定义,熟练掌握相似多边形的性质:对应角相等,对应边成比例是解题的关键.10、B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、1【分析】根据题意,利用分类讨论的方法、二次函数的性质和一次函数的性质可以求得各段对应的最小值,从而可以解答本题.【详解】∵(x2+2x+3)﹣(﹣2x+8)=x2+4x﹣5=(x+5)(x﹣1),∴当x=﹣5或x=1时,(x2+2x+3)﹣(﹣2x+8)=0,∴当x≥1时,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥1,当x≤﹣5时,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥18,当﹣5<x<1时,max{x2+2x+3,﹣2x+8}=﹣2x+8>1,由上可得:max{x2+2x+3,﹣2x+8}的最小值是1.故答案为:1.【点睛】本题考查了二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.12、【分析】根据题意可知共有6种等可能结果,所以要使事件“红色朝上”的概率为,则需要有2种符合题意的结果,从而求解.【详解】解:∵一个质地均匀的小正方体有六个面∴在桌面上掷这个小正方体,共有6种等可能结果,其中把2个面涂为红色,则使事件“红色朝上”的概率为故答案为:2【点睛】本题考查简单的概率计算,理解概率的概念并根据概率的计算公式正确计算是本题的解题关键.13、【分析】由1占圆,2与3占,可得把数字为1的扇形可以平分成2部分,即可得转动转盘一次共有4种等可能的结果,分别是1,1,2,3;然后由概率公式即可求得.【详解】解:占圆,2与3占,把数字为1的扇形可以平分成2部分,转动转盘一次共有4种等可能的结果,分别是1,1,2,3;当转盘停止后,指针指向的数字为偶数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率所求情况数与总情况数之比.14、【分析】首先连接AB,由∠AOB=90°,可得AB是直径,又由∠OAB=∠OCB=60°,然后根据含30°的直角三角形的性质,求得AB的长,然后根据勾股定理,求得OB的长.【详解】解:连接AB,
∵∠AOB=90°,
∴AB是直径,
∵∠OAB=∠OCB=60°,
∴∠ABO=30°,
∵点A的坐标为(0,1),
∴OA=1,
∴AB=2OA=2,
∴OB=,故选:C.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.15、.【分析】点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3即可求出k的值.【详解】把点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=,故答案为:.【点睛】本题考查求二次函数解析式的系数,解题的关键是将图象上的点坐标代入函数解析式.16、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17、(3,-4)【解析】分析:利用配方法得出二次函数顶点式形式,即可得出二次函数顶点坐标.详解:∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线顶点坐标为(3,﹣4).故答案为(3,﹣4).点睛:此题考查了二次函数的性质,求抛物线的顶点坐标可以先配方化为顶点式,也可以利用顶点坐标公式()来找抛物线的顶点坐标.18、1.【详解】解:同弧所对圆心角是圆周角的2倍,所以∠ACB=∠AOB=1°.∵∠AOB=60°∴∠ACB=1°故答案为:1.【点睛】本题考查圆周角定理.三、解答题(共66分)19、(1);(2)销售单价为30时,该商城获利最大,最大利润为800元;(3)单价定为25元【分析】(1)利用利润=每件的利润×数量即可表示出与之间的函数表达式;(2)根据二次函数的性质即可求出最大值;(3)令,求出x值即可.【详解】解:(1)(2)由(1)知,∵,∴当时,有最大值,最大值为800元即销售单价为30时,该商城获利最大,最大利润为800元.(3)令,即解得或因为要确保顾客得到优惠所以不符合题意,舍去所以在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,该商城应将销售单价定为25元【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质是解题的关键.20、(1)①∠BAE=90°,②∠EAC=∠ABC;(2)EF是⊙O的切线【分析】(1)若EF是切线,则AB⊥EF,添加的条件只要能使AB⊥EF即可;(2)作直径AM,连接CM,理由圆周角定理以及直径所对的圆周角是直角即可.【详解】(1)∠BAE=90°;∠CAE=∠B;(2)EF是⊙O的切线.作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.21、(1)1980;(2)w=﹣5(x﹣1)2+180,w有最大值是680元;(3)112元【分析】(1)当3≤x<16时,设p与x的关系式为p=kx+b,当x=11时,代入解析式求出p的值,由销售金额=单价×数量就可以求出结论;(2)根据两个图象求得两个一次函数解析式,进而根据销售问题的等量关系列出二次函数解析式即可;(3)当x=15时代入(2)的解析式求出p的值,再当x=15时代入(1)的解析式求出y的值,再由利润=销售总额−进价总额−车费就可以得出结论.【详解】解:(1)当3≤x≤16时设p与x之间的函数关系式为p=kx+b依题意得把(3,30),(16,17)代入,解得∴p=﹣x+33当x=11时,p=22所以90×22=1980答:第11天的日销售额w为1980元.故答案为1980;(2)当11≤x≤20时设y与x之间的函数关系式为y=k1x+b1,依题意得把(20,0),(11,90)代入得解得∴y=﹣10x+200当16≤x≤20时设p与x之间的函数关系式为:p=k2x+b2依题意得,把(16,17),(20,19)代入得解得k2=,b2=9:∴p=x+9w=py=(x+9)(﹣10x+200)=﹣5(x﹣1)2+1805∴当16≤x≤20时,w随x的增大而减小∴当x=16时,w有最大值是680元.(3)由(1)得当3≤x≤16时,p=﹣x+33当x=15时,p=﹣15+33=18元,y=﹣10×15+200=50千克利润为:50(1﹣2%)×18﹣50×15﹣20=112元答:当天能赚到112元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是根据题意分别列出一次函数与二次函数求解.22、(1);(2)①,②;(3)【解析】(1)作AH⊥OB,根据正弦的定义即可求解;(2)作MC⊥OB,先求出直线AB解析式,根据等腰三角形的性质及三角函数的定义求出M点坐标,根据MN∥OB,求出N点坐标;(3)由于点C是定点,点P随△ABO旋转时的运动轨迹是以B为圆心,BP长为半径的圆,故根据点和圆的位置关系可知,当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长.又因为BP的长因点D运动而改变,可先求BP长度的范围.由垂线段最短可知,当BP垂直MN时,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以点P与M重合时,BP=BM最长,代入CP=BP+BC求CP的最大值.【详解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH=∴==(2)由(1)得A(3,4),又求得直线AB的解析式为:y=∵旋转,∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×=即M点的纵坐标为,代入直线AB得x=∴,∵∠NMB=∠AOB=∠ABO∴MN∥OB,又MN=AB=5,则+5=∴(3)连接BP∵点D为线段OA上的动点,OA的对应边为MN∴点P为线段MN上的动点∴点P的运动轨迹是以B为圆心,BP长为半径的圆∵C在OB上,且CB=OB=3∴当点P在线段OB上时,CP=BP−BC最短;当点P在线段OB延长线上时,CP=BP+BC最长如图3,当BP⊥MN时,BP最短∵S△NBM=S△ABO,MN=OA=5∴MN⋅BP=OB⋅yA∴BP===∴CP最小值=−3=当点P与M重合时,BP最大,BP=BM=OB=6∴CP最大值=6+3=9∴线段CP长的取值范围为.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用、旋转的性质、三角函数的应用.23、10cm【分析】取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,设OF=x,则OM=16−x,MF=8,然后在中利用勾股定理求得OF的长即可.【详解】解:如图,取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16,设OF=x,则OM=16-x,MF=8,∴在中,,即,解得:x=10,答:球的半径为10cm.【点睛】本题主要考查了垂径定理,矩形的判定与性质及勾股定理的知识,解题的关键是正确作出辅助线构造直角三角形.24、(1),;(2),【分析】(1)根据公式法即可求解;(2)根据因式分解法即可求解.【详解】(1)a=2,b=-5,c=1∴b2-4ac=25-8=17>0故x=∴,(2)∴3x-2=0或-x+4=0故,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知公式法及因式分解法的运用.25、(1);(2)的面积为1.【分析】(1)把点代入反比例函数即可求出比例函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 6331:2024 EN Chromium ores and concentrates - Determination of chromium content - Titrimetric method
- 2024年度网络营销合同的网络推广策略与效果评估
- 2024年度版权转让合同转让标的和转让价格2篇
- 《偏瘫患者肩部问题》课件
- 2024年度劳动合同模板及管理制度2篇
- 2024年度碧桂园工程质量检测合同
- 2024年度区块链技术开发与应用合同3篇
- 2024年度羽毛球场地维修与保养合同
- 2024年度技术开发项目合作承包合同
- 2024年度工程设备租赁与维护服务合同
- 全国行政区划代码(12位)
- 装配式建筑概论复习题
- 数字摄影技术与艺术中国大学mooc课后章节答案期末考试题库2023年
- 2023年叉车证特种设备作业N1证理论考试题库及答案
- 青年教师三年发展规划青年教师个人发展规划书3篇
- 传热学-7-凝结和沸腾传热课件
- 《药品储存与养护》期末考试习题库(含答案)
- 2023学年完整公开课版《母鸡的秘密》
- 固定资产的取得
- 血管瘤-教学讲解课件
- 5G基站建设与维护高职全套PPT完整教学课件
评论
0/150
提交评论