初中一年级数学上册知识点总结_第1页
初中一年级数学上册知识点总结_第2页
初中一年级数学上册知识点总结_第3页
初中一年级数学上册知识点总结_第4页
初中一年级数学上册知识点总结_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Word-8-初中一年级数学上册知识点总结(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;

(2)有理数的分类:①整数②分数

(3)留意:有理数中,1、0、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数0和正整数;a0a是正数;a0a是负数;

a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数。

有理数比大小:

(1)正数的肯定值越大,这个数越大;

(2)正数永久比0大,负数永久比0小;

(3)正数大于一切负数;

(4)两个负数比大小,肯定值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数0,小数-大数0.

初一数学上册学问点总结篇二

1、我们把实物中抽象的各种图形统称为几何图形(geometricfigure)。

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。

4、将由平面图形围成的立体图形表面适当剪开,可以绽开成平面图形,这样的平面图形称为相应立体图形的绽开图(net)。

5、几何体简称为体(solid)。

6、包围着体的是面(surface),面有平的面和曲的面两种。

7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

8、点动成面,面动成线,线动成体。

9、经过探究可以得到一个基本领实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointofintersection)。

11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。

12、经过比较,我们可以得到一个关于线段的基本领实:两点的全部连线中,线段最短。简洁说成:两点之间,线段最短。(公理)

13、连接两点间的线段的长度,叫做这两点的距离(distance)。

14、角∠(angle)也是一种基本的几何图形。

15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

16、从一个角的顶点动身,把这个角分成相等的两个角的射线,叫做这个角的平分线(angularbisector)。

17、假如两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角。

18、假如两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

19、等角的补角相等,等角的余角相等。

学校一班级数学上册学问点总结篇三

1、代数式:用运算符号“+—×÷……”连接数及表示数的字母的式子称为代数式、留意:用字母表示数有肯定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式、

2、列代数式的几个留意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中消失除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a—b,要留意字母挨次;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a、

3、几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是:a2—b2;a与b差的平方是:(a—b)2;

(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2、

初一数学上册学问点总结篇四

学问点、概念总结

1、不等式:用符号,,≤,≥表示大小关系的式子叫做不等式。

2、不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥,≤连接的不等式称为非严格不等式,或称广义不等式。

3、不等式的解:使不等式成立的未知数的'值,叫做不等式的解。

4、不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。

5、不等式解集的表示方法:

(1)用不等式表示:一般的,一个含未知数的不等式有很多个解,其解集是一个范围,这个范围可用最简洁的不等式表达出来,例如:x-1≤2的解集是x≤3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要留意两点:一是定边界线;二是定方向。

6、解不等式可遵循的一些同解原理

(1)不等式F(x)F(x)同解。

(2)假如不等式F(x)g(x)的定义域被解析式h(x)的定义域所包含,那么不等式f(x)g(x)与不等式h(x)+f(x)p=

(3)假如不等式F(x)0,那么不等式F(x)g(x)与不等式h(x)f(x)0,那么不等式f(x)H(x)G(x)同解。

7、不等式的性质:

(1)假如xy,那么yy;(对称性)

(2)假如xy,yz;那么xz;(传递性)

(3)假如xy,而z为任意实数或整式,那么x+zy+z;(加法则)

(4)假如xy,z0,那么xzyz;假如xy,z0,那么xz

(5)假如xy,z0,那么x÷zy÷z;假如xy,z0,那么x÷z

(6)假如xy,mn,那么x+my+n(充分不必要条件)

(7)假如xy0,mn0,那么xmyn

(8)假如xy0,那么x的n次幂y的n次幂(n为正数)

8、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9、解一元一次不等式的一般挨次:

(1)去分母(运用不等式性质2、3)

(2)去括号

(3)移项(运用不等式性质1)

(4)合并同类项

(5)将未知数的系数化为1(运用不等式性质2、3)

(6)有些时候需要在数轴上表示不等式的解集

10、一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。

11、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

了一个一元一次不等式组。

12、解一元一次不等式组的步骤:

(1)求出每个不等式的解集;

(2)求出每个不等式的解集的公共部分;(一般利用数轴)

(3)用代数符号语言来表示公共部分。(也可以说成是下结论)

13、解不等式的诀窍

(1)大于大于取大的(大大大);

例如:X-1,X2,不等式组的解集是X2

(2)小于小于取小的(小小小);

例如:X-4,X-6,不等式组的解集是X-6

(3)大于小于交叉取中间;

(4)无公共部分分开无解了;

14、解不等式组的口诀

(1)同大取大

例如,x2,x3,不等式组的解集是X3

(2)同小取小

例如,x2,x3,不等式组的解集是X2

(3)大小小大中间找

例如,x2,x1,不等式组的解集是1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论