版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.2.设函数的定义域为,命题:,的否定是()A., B.,C., D.,3.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是14.点在所在的平面内,,,,,且,则()A. B. C. D.5.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A. B.C. D.6.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.7.定义在上的函数与其导函数的图象如图所示,设为坐标原点,、、、四点的横坐标依次为、、、,则函数的单调递减区间是()A. B. C. D.8.已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]9.若实数满足不等式组,则的最大值为()A. B. C.3 D.210.在中所对的边分别是,若,则()A.37 B.13 C. D.11.已知集合,,则的真子集个数为()A.1个 B.2个 C.3个 D.4个12.如图,棱长为的正方体中,为线段的中点,分别为线段和棱上任意一点,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是等比数列,,则__________.14.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.15.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.16.设集合,,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.18.(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求和的普通方程;(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.21.(12分)已知函数,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.【题目详解】因为,所以z的虚部为2.【答案点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.2、D【答案解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【题目详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【答案点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.3、A【答案解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【答案点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.4、D【答案解析】
确定点为外心,代入化简得到,,再根据计算得到答案.【题目详解】由可知,点为外心,则,,又,所以①因为,②联立方程①②可得,,,因为,所以,即.故选:【答案点睛】本题考查了向量模长的计算,意在考查学生的计算能力.5、C【答案解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.6、B【答案解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【题目详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【答案点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.7、B【答案解析】
先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【题目详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.对函数求导得,由得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【答案点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.8、A【答案解析】
根据符号函数的解析式,结合f(x)的单调性分析即可得解.【题目详解】根据题意,g(x)=f(x)﹣f(ax),而f(x)是R上的减函数,当x>0时,x<ax,则有f(x)>f(ax),则g(x)=f(x)﹣f(ax)>0,此时sgn[g(x)]=1,当x=0时,x=ax,则有f(x)=f(ax),则g(x)=f(x)﹣f(ax)=0,此时sgn[g(x)]=0,当x<0时,x>ax,则有f(x)<f(ax),则g(x)=f(x)﹣f(ax)<0,此时sgn[g(x)]=﹣1,综合有:sgn[g(x)]=sgn(x);故选:A.【答案点睛】此题考查函数新定义问题,涉及函数单调性辨析,关键在于读懂定义,根据自变量的取值范围分类讨论.9、C【答案解析】
作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【题目详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【答案点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.10、D【答案解析】
直接根据余弦定理求解即可.【题目详解】解:∵,∴,∴,故选:D.【答案点睛】本题主要考查余弦定理解三角形,属于基础题.11、C【答案解析】
求出的元素,再确定其真子集个数.【题目详解】由,解得或,∴中有两个元素,因此它的真子集有3个.故选:C.【答案点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集.12、D【答案解析】
取中点,过作面,可得为等腰直角三角形,由,可得,当时,最小,由,故,即可求解.【题目详解】取中点,过作面,如图:则,故,而对固定的点,当时,最小.此时由面,可知为等腰直角三角形,,故.故选:D【答案点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
根据等比数列通项公式,首先求得,然后求得.【题目详解】设的公比为,由,得,故.故答案为:【答案点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.14、【答案解析】
由已知可得、的坐标,求得的垂直平分线方程,联立已知直线方程与椭圆方程,求得的垂直平分线方程,两垂直平分线方程联立求得外心的横坐标,再由导数求最值.【题目详解】如图,由已知条件可知,不妨设,则外心在的垂直平分线上,即在直线,也就是在直线上,联立,得或,的中点坐标为,则的垂直平分线方程为,把代入上式,得,令,则,由,得(舍)或.当时,,当时,.当时,函数取极大值,亦为最大值.故答案为:.【答案点睛】本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题.15、【答案解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【题目详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【答案点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.16、【答案解析】
先解不等式,再求交集的定义求解即可.【题目详解】由题,因为,解得,即,则,故答案为:【答案点睛】本题考查集合的交集运算,考查解一元二次不等式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)见解析;(3)存在,1.【答案解析】
(1),求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【题目详解】(1),,,当时,,当时,,∴,故.(2)由题知,,,①当时,,所以在上单调递减,没有极值;②当时,,得,当时,;当时,,所以在上单调递减,在上单调递增.故在处取得极小值,无极大值.(3)不妨令,设在恒成立,在单调递增,,在恒成立,所以,当时,,由(2)知,当时,在上单调递减,恒成立;所以不等式在上恒成立,只能.当时,,由(1)知在上单调递减,所以,不满足题意.当时,设,因为,所以,,即,所以在上单调递增,又,所以时,恒成立,即恒成立,故存在,使得不等式在上恒成立,此时的最小值是1.【答案点睛】本题考查导数综合应用,涉及到函数的单调性、极值最值、不等式证明,考查分类讨论思想,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.18、(1)曲线的普通方程为:;曲线的普通方程为:(2)【答案解析】
(1)消去曲线参数方程中的参数,求得和的普通方程.(2)设出过原点的直线的极坐标方程,代入曲线的极坐标方程,求得的表达式,结合三角函数值域的求法,求得的最小值.【题目详解】(1)曲线的普通方程为:;曲线的普通方程为:.(2)设过原点的直线的极坐标方程为;由得,所以曲线的极坐标方程为在曲线中,.由得曲线的极坐标方程为,所以而到直线与曲线的交点的距离为,因此,即的最小值为.【答案点睛】本小题主要考查参数方程化为普通方程,考查直角坐标方程化为极坐标方程,考查极坐标系下距离的有关计算,属于中档题.19、(1)(2)【答案解析】
(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【题目详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【答案点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.20、(1)证明见解析(2)【答案解析】
(1)由底面为菱形,得,再由底面,可得,结合线面垂直的判定可得平面;(2)以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得平面与平面所成锐二面角的余弦值.【题目详解】(1)证明:底面为菱形,,底面,平面,又,平面,平面;(2)解:,,为等边三角形,.底面,是直线与平面所成的角为,在中,由,解得.如图,以点为坐标原点,以所在直线及过点且垂直于平面的直线分别为轴建立空间直角坐标系.则,,,,.,,,.设平面与平面的一个法向量分别为,.由,取,得;由,取,得..平面与平面所成锐二面角的余弦值为.【答案点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度二手车买卖合同范本含车辆维修保养协议3篇
- 转向拉杆课程设计
- 二零二五年度信息安全咨询服务保密协议范本2篇
- 二零二五年度无人机采购安装与培训合同3篇
- 二零二五年度工程车租赁及运输服务合同3篇
- 二零二五年度合伙人联合市场推广协议
- 电力二次系统安全防护处置方案例文(2篇)
- 2025年小学二年级数学上册教学工作总结(3篇)
- 2025年六年级上学期语文教师工作总结范文(2篇)
- 2025年毕业典礼教师演讲稿范文(2篇)
- (42)-妊娠合并内外科疾病
- 骨科手术后患者营养情况及营养不良的原因分析,骨伤科论文
- 糕点生产检验记录表
- GB/T 1040.3-2006塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件
- 河北省房屋建筑和市政基础设施施工图设计文件审查要点(版)
- 医院院长年终工作总结报告精编ppt
- 绿化养护重点难点分析及解决措施
- “三排查三清零”回头看问题整改台账
- 造价咨询结算审核服务方案
- 中国人民财产保险股份有限公司机动车综合商业保险条款
- 八年级物理上册计算题精选(50道)
评论
0/150
提交评论