版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.2.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.3.已知函数(),若函数在上有唯一零点,则的值为()A.1 B.或0 C.1或0 D.2或04.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A. B.C. D.5.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°6.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A. B. C. D.7.的内角的对边分别为,已知,则角的大小为()A. B. C. D.8.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.19.函数的图象大致为()A. B.C. D.10.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则11.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.12.若复数是纯虚数,则()A.3 B.5 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.,则f(f(2))的值为____________.14.已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为________.15.满足约束条件的目标函数的最小值是.16.已知的终边过点,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.18.(12分)已知f(x)=|x+3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:19.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.21.(12分)如图,在正四棱锥中,,,为上的四等分点,即.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.22.(10分)已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.(1)证明:平面;(2)若,求直线与平面所成角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【题目详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【答案点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.2、A【答案解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【题目详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【答案点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.3、C【答案解析】
求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【题目详解】解:∵(),∴,∴当时,由得,则在上单调递减,在上单调递增,所以是极小值,∴只需,即.令,则,∴函数在上单调递增.∵,∴;当时,,函数在上单调递减,∵,,函数在上有且只有一个零点,∴的值是1或0.故选:C【答案点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.4、B【答案解析】
选B.考点:圆心坐标5、C【答案解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.【题目详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【答案点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.6、D【答案解析】
求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【题目详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【答案点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.7、A【答案解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【题目详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【答案点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.8、B【答案解析】
,选B.9、A【答案解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.【题目详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.故选:A.【答案点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.10、D【答案解析】试题分析:,,故选D.考点:点线面的位置关系.11、D【答案解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【题目详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【答案点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.12、C【答案解析】
先由已知,求出,进一步可得,再利用复数模的运算即可【题目详解】由z是纯虚数,得且,所以,.因此,.故选:C.【答案点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】
先求f(1),再根据f(1)值所在区间求f(f(1)).【题目详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【答案点睛】本题考查分段函数求值,考查对应性以及基本求解能力.14、【答案解析】
基本事件总数,这3个点共线的情况有两种和,由此能求出这3个点不共线的概率.【题目详解】解:为矩形的对角线的交点,现从,,,,这5个点中任选3个点,基本事件总数,这3个点共线的情况有两种和,这3个点不共线的概率为.故答案为:.【答案点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,属于基础题.15、-2【答案解析】
可行域是如图的菱形ABCD,代入计算,知为最小.16、【答案解析】
】由题意利用任意角的三角函数的定义,求得的值.【题目详解】∵的终边过点,若,.即答案为-2.【答案点睛】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)米.【答案解析】
(1)过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.(2)根据(1)有,再设,求导分析函数的单调性与最值即可.【题目详解】解:过点作于点则,在中,,,由正弦定理得:,,,,,因为,化简得,令,,且,因为,故令即,记,当时,单调递增;当时,单调递减,又,当时,取最大值,此时,的最大值为米.【答案点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.18、(1)(2)见解析【答案解析】
(1)利用绝对值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式证得不等式成立;方法二,利用“的代换”的方法,结合基本不等式证得不等式成立.【题目详解】(1)由绝对值不等式性质得当且仅当即时等号成立,所以(2)由(1)得.法1:由柯西不等式得当且仅当时等号成立,即,所以.法2:由得,,当且仅当时“=”成立.【答案点睛】本小题主要考查绝对值三角不等式,考查利用柯西不等式、基本不等式证明不等式,属于中档题.19、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【答案解析】
(1)根据题中数据得到列联表,然后计算出,与临界值表中的数据对照后可得结论;(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【题目详解】(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)在城镇居民140人中,经常阅读的有100人,不经常阅读的有40人.采取分层抽样抽取7人,则其中经常阅读的有5人,记为、、、、;不经常阅读的有2人,记为、.从这7人中随机选取2人作交流发言,所有可能的情况为,,,,,,,,,,,,,,,,,,,,,共21种,被选中的位居民都是经常阅读居民的情况有种,所求概率为.【答案点睛】本题主要考查古典概型的概率计算,以及独立性检验的应用,利用列举法是解决本题的关键,考查学生的计算能力.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可,属于中档题.20、(1)答案见解析(2)【答案解析】
(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【题目详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),,设(),恒大于零.在上单调递增.又,,,∴存在唯一,使,且时,时,①当时,恒成立,在单调递增,无极值,不合题意.②当时,可得当时,,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.③当时,可得当时,,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.【答案点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.21、(1)答案见解析.(2)【答案解析】
(1)根据题意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以为原点建立直角坐标系,求出面的法向量为,的法向量为,利用空间向量的数量积即可求解.【题目详解】(1)由由因为是正四棱锥,故于是,由余弦定理,在中,设再用余弦定理,在中,∴是直角,同理,而在平面上,∴平面平面(2)以为原点建立直角坐标系,如图:则设面的法向量为,的法向量为则,取于是,二面角的余弦值为:【答案点睛】本题考查了面面垂直的判定定理、空间向量法求二面角,属于基础题.22、(1)证明见解析;(2)【答案解析】
(1)连接交于点,连接,通过证,并说明平面,来证明平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 负面情绪处理课程设计
- 2024年幼儿健康管理知识培训题库(含答案)
- 二零二五版四荒地承包经营权投资融资合同3篇
- 年度多用客房车市场分析及竞争策略分析报告
- 年度垃圾收转装备战略市场规划报告
- 2024版远程教育平台搭建合同3篇
- 二零二五年度门店租赁合同范本:环保节能标准版4篇
- 室外电气工程施工方案
- 送水泵房的课程设计
- 2025年度个人电子设备买卖合同模板2篇
- 骨科手术后患者营养情况及营养不良的原因分析,骨伤科论文
- GB/T 24474.1-2020乘运质量测量第1部分:电梯
- GB/T 12684-2006工业硼化物分析方法
- 定岗定编定员实施方案(一)
- 高血压患者用药的注意事项讲义课件
- 特种作业安全监护人员培训课件
- (完整)第15章-合成生物学ppt
- 太平洋战争课件
- 封条模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖浆
- 货代操作流程及规范
评论
0/150
提交评论