




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6页(共6页)二次函数定义图像及性质一.二次函数的定义(共4小题)1.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+ 2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.03.下列说法正确的是()A.若a2=b2,则a=b B.sin45°+cos45°=1 C.代数式a2+4a+5的值可能为0 D.函数y=(a2+1)x2+bx+c﹣2b是关于x的二次函数4.已知函数y=ax2+bx+c(其中a,b,c是常数),当a时,是二次函数;当a,b时,是一次函数;当a,b,c时,是正比例函数.二.二次函数的图象(共4小题)5.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A. B. C. D.6.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A. B. C. D.7.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>08.函数y=ax2+a与(a≠0),在同一坐标系中的图象可能是()A. B. C. D.三.二次函数的性质(共4小题)9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4) B.AB=AD C.a=﹣ D.OC•OD=1610.已知抛物线C:y=(x﹣1)2﹣1,顶点为D,将C沿水平方向向右(或向左)平移m个单位,得到抛物线C1,顶点为D1,C与C1相交于点Q,若∠DQD1=60°,则m等于()A.±4 B.±2 C.﹣2或2 D.﹣4或411.已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.12.已知:关于x的方程ax2﹣(1﹣3a)x+2a﹣1=0.(1)当a取何值时,二次函数y=ax2﹣(1﹣3a)x+2a﹣1的对称轴是x=﹣2;(2)求证:a取任何实数时,方程ax2﹣(1﹣3a)x+2a﹣1=0总有实数根.四.二次函数图象与系数的关系(共6小题)13.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1 B.2 C.3 D.414.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③ B.②⑤ C.③④ D.④⑤15.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.616.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是()A.b2>4ac B.abc>0 C.a﹣c<0 D.am2+bm≥a﹣b(m为任意实数)17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.418.二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a﹣b.则M、N的大小关系为MN.(填“>”、“=”或“<”)五.二次函数图象上点的坐标特征(共5小题)19.若二次函数y=a2x2﹣bx﹣c的图象,过不同的六点A(﹣1,n)、B(5,n﹣1)、C(6,n+1)、D(,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3 B.y1<y3<y2 C.y2<y3<y1 D.y2<y1<y320.已知点A(1,y1),B(2,y2)在抛物线y=﹣(x+1)2+2上,则下列结论正确的是()A.2>y1>y2 B.2>y2>y1 C.y1>y2>2 D.y2>y1>221.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1 B.y3>y1=y2 C.y1>y2>y3 D.y1=y2>y322.点A(﹣4,3),B(0,k)在二次函数y=﹣(x+2)2+h的图象上,则k=.23.当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3的函数值相等,当x=m+n时,函数y=x2﹣2x+3的值为.六.二次函数图象与几何变换(共5小题)24.将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2 B.y=﹣x2+2 C.y=x2﹣2 D.y=x2+225.抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2 C.y=3(x+3)2﹣3 D.y=3x2﹣626.将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8 B.b>﹣8 C.b≥8 D.b≥﹣827.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣228.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是.七.二次函数的最值(共5小题)29.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cm B.18cm C.2cm D.3cm30.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2 B.16cm2 C.15cm2 D.12cm231.二次函数y=x2+4x﹣3的最小值是.32.二次函数y=﹣2x2﹣4x+5的最大值是.33.如图,在Rt△ABC中,∠A=90°.A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业园区规划与建设经验分享
- 工业大数据在智能工厂的应用实践
- 工业污染治理设施运营与维护
- 工业废水处理技术及发展趋势
- 工业污染与防治策略
- 工业自动化中机器视觉的技术突破
- 工业物联网技术的发展与挑战
- 工业绿色化改造实践
- 工业级安防监控技术的突破与趋势
- 工业设计在智能制造中的作用与价值
- 工地试验室安全培训内容
- 医疗设备维保服务项目组织机构及人员配备
- 射频同轴连接器设计理论基础
- 2024年内蒙古自治区包头市公开招聘警务辅助人员(辅警)笔试高频必刷题试卷含答案
- 耳尖放血医学课件
- 公司绿色可持续发展规划报告
- 2024年4月份弱电施工日志
- 【MOOC】设计的力量-湖南大学 中国大学慕课MOOC答案
- 《AIGC与电商营销技能实战(慕课版)》 课件 第9章 AIGC 应用案例
- 《现代仪器分析方法》课件
- 南邮软件设计报告
评论
0/150
提交评论